Oh Su Cheun, Schulman Emily, Zhang Junyan, Fan Jiufeng, Pan Ying, Meng Jianqiang, Liu Dongxia
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, China.
Angew Chem Int Ed Engl. 2019 May 20;58(21):7083-7086. doi: 10.1002/anie.201903000. Epub 2019 Apr 17.
Direct non-oxidative methane conversion (DNMC) has been recognized as a single-step technology that directly converts methane into olefins and higher hydrocarbons. High reaction temperature and low catalyst durability, resulting from the endothermic reaction and coke deposition, are two main challenges. We show that a millisecond catalytic wall reactor enables stable methane conversion, C selectivity, coke yield, and long-term durability. These effects originate from initiation of the DNMC on a reactor wall and maintenance of the reaction by gas-phase chemistry within the reactor compartment. The results obtained under various temperatures and gas flow rates form a basis for optimizing the process towards lighter C or heavier aromatic products. A process simulation was done by Aspen Plus to understand the practical implications of this reactor in DNMC. High carbon and thermal efficiencies and low cost of the reactor materials are realized, indicating the technoeconomic viability of this DNMC technology.
直接非氧化甲烷转化(DNMC)已被公认为是一种将甲烷直接转化为烯烃和高级烃类的单步技术。由吸热反应和焦炭沉积导致的高反应温度和低催化剂耐久性是两个主要挑战。我们表明,毫秒级催化壁反应器能够实现稳定的甲烷转化、碳选择性、焦炭产率和长期耐久性。这些效果源于DNMC在反应器壁上的引发以及通过反应室内的气相化学维持反应。在各种温度和气体流速下获得的结果为优化向轻质碳或重质芳烃产物的工艺提供了基础。通过Aspen Plus进行了工艺模拟,以了解该反应器在DNMC中的实际意义。实现了高碳效率和热效率以及低反应器材料成本,表明了这种DNMC技术的技术经济可行性。