Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
Chem Commun (Camb). 2019 Apr 2;55(28):4035-4038. doi: 10.1039/c9cc00837c.
We present here the electrochemical oxidation of Am(iii) to AmVO2+ and AmVIO22+ in pH 1 nitric acid using a mesoporous tin-doped indium oxide electrode modified with a covalently attached dipyrazinylpyridine ligand. The applied potential affects the distribution of Am oxidation products. At potential 1.8 V, only Am(v) is observed, while increasing the potential to as much as 2.0 V, results in oxidation of Am(iii) to Am(v) and subsequent oxidation of Am(v) to Am(vi). At applied potentials >2.0 V, Am(iii) is oxidized to Am(v), while Am(vi) is reduced to Am(v). The latter reduction reaction is likely due to the increased rate of hydrogen peroxide formation from the 2-electron oxidation of water at the electrode at these high potentials. The development of future ligand modified electrodes for actinide oxidations must consider how they facilitate Am oxidations while disfavoring unwanted or competing reactions.
我们在此展示了在 pH 值为 1 的硝酸中,使用共价键合连接的二吡嗪基吡啶配体修饰的介孔锡掺杂氧化铟电极,将 Am(iii)电化学氧化为 AmVO2+和 AmVIO22+。施加的电势会影响 Am 氧化产物的分布。在 1.8 V 的电势下,仅观察到 Am(v),而将电势增加到 2.0 V 左右,会导致 Am(iii)氧化为 Am(v),随后 Am(v)进一步氧化为 Am(vi)。在施加的电势 >2.0 V 时,Am(iii)被氧化为 Am(v),同时 Am(vi)被还原为 Am(v)。后者的还原反应可能是由于在这些高电势下,电极上水的 2 电子氧化导致过氧化氢的形成速率增加。未来用于锕系元素氧化的配体修饰电极的开发必须考虑到它们如何促进 Am 的氧化,同时不有利于不需要的或竞争的反应。