Zhang Dongdong, Wang Jianlong, He Chong, Wang Yuzi, Guan Taotao, Zhao Jianghong, Qiao Jinli, Li Kaixi
Institute of Coal Chemistry , Chinese Academy of Sciences , 27 Taoyuan South Road , Taiyuan 030001 , China.
Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 010049 , China.
ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13214-13224. doi: 10.1021/acsami.8b22370. Epub 2019 Mar 26.
Porous carbons represent a typical class of electrode materials for electric double-layer capacitors. However, less attention has been focused on the study of the capacitive mechanism of electrochemically active surface oxygen groups rooted in porous carbons. Herein, the degree and variety of oxygen surface groups of HNO-modified samples (N-CS) are finely tailored by a mild hydrothermal oxidation (0.0-3.0 mol L), while the micro-meso-macroporous structures are efficiently preserved from the original sample. Thus, N-CS is a suitable carrier for separately discussing the contribution of oxygen functional groups to the electrochemical property. The optimized N-CS shows a high capacitance of 279.4 F g at 1 A g, exceeding 52.8% of pristine carbon sphere (CS) (182.8 F g at 1 A g) in KOH electrolyte. On further deconvoluting the redox peaks of cyclic voltammetry curves, we find that the pseudocapacitance not only associates with the surface-controlled faradic reaction at high scan rate but also dramatically stems from the diffusion-controlled capacitance through potassium and hydroxyl ion insertion/deinsertion into the underutilized micropores at low scan rate. The assembled supercapacitor based on N-CS presents a stable energy density of 5 Wh kg over a wide range of power density of 250-5000 W kg, which is higher than 0.0N-CS in KOH electrolyte. In TEABF electrolyte, the N-CS supercapacitor has an energy density of 26.9 Wh kg at the power density of 1350 W kg and exhibits excellent cycling stability with a capacitance retention of 93.2% at 2 A g after 10 000 cycles. These results demonstrate that surface oxygen groups alter the capacitive mechanism and contribution of porous carbons.
多孔碳是双电层电容器的一类典型电极材料。然而,对于多孔碳中电化学活性表面氧基团的电容机制研究较少受到关注。在此,通过温和的水热氧化(0.0 - 3.0 mol/L)精细调控了HNO改性样品(N-CS)的氧表面基团的程度和种类,同时有效保留了原始样品的微-介-大孔结构。因此,N-CS是分别讨论氧官能团对电化学性能贡献的合适载体。优化后的N-CS在1 A/g时显示出279.4 F/g的高电容,在KOH电解液中比原始碳球(CS)(1 A/g时为182.8 F/g)高出52.8%。在进一步解卷积循环伏安曲线的氧化还原峰时,我们发现赝电容不仅与高扫描速率下的表面控制法拉第反应有关,而且在低扫描速率下还显著源于通过钾离子和氢氧根离子插入/脱出到未充分利用的微孔中的扩散控制电容。基于N-CS组装的超级电容器在250 - 5000 W/kg的宽功率密度范围内呈现出5 Wh/kg的稳定能量密度,这在KOH电解液中高于0.0N-CS。在TEABF电解液中,N-CS超级电容器在1350 W/kg的功率密度下具有26.9 Wh/kg的能量密度,并且在2 A/g下经过10000次循环后表现出优异的循环稳定性,电容保持率为93.2%。这些结果表明表面氧基团改变了多孔碳的电容机制和贡献。