Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada.
Division of Neurosurgery, Department of Surgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada.
Crit Care Med. 2019 Jul;47(7):960-969. doi: 10.1097/CCM.0000000000003745.
In patients at risk of hypoxic ischemic brain injury following cardiac arrest, we sought to: 1) characterize brain oxygenation and determine the prevalence of brain hypoxia, 2) characterize autoregulation using the pressure reactivity index and identify the optimal mean arterial pressure, and 3) assess the relationship between optimal mean arterial pressure and brain tissue oxygenation.
Prospective interventional study.
Quaternary ICU.
Adult patients with return of spontaneous circulation greater than 10 minutes and a postresuscitation Glasgow Coma Scale score under 9 within 72 hours of cardiac arrest.
All patients underwent multimodal neuromonitoring which included: 1) brain tissue oxygenation, 2) intracranial pressure, 3) jugular venous continuous oximetry, 4) regional saturation of oxygen using near-infrared spectroscopy, and 5) pressure reactivity index-based determination of optimal mean arterial pressure, lower and upper limit of autoregulation. We additionally collected mean arterial pressure, end-tidal CO2, and temperature. All data were captured at 300 Hz using ICM+ (Cambridge Enterprise, Cambridge, United Kingdom) brain monitoring software.
Ten patients (7 males) were included with a median age 47 (range 20-71) and return to spontaneous circulation 22 minutes (12-36 min). The median duration of monitoring was 47 hours (15-88 hr), and median duration from cardiac arrest to inclusion was 15 hours (6-44 hr). The mean brain tissue oxygenation was 23 mm Hg (SD 8 mm Hg), and the mean percentage of time with a brain tissue oxygenation below 20 mm Hg was 38% (6-100%). The mean pressure reactivity index was 0.23 (0.27), and the percentage of time with a pressure reactivity index greater than 0.3 was 50% (12-91%). The mean optimal mean arterial pressure, lower and upper of autoregulation were 89 mm Hg (11), 82 mm Hg (8), and 96 mm Hg (9), respectively. There was marked between-patient variability in the relationship between mean arterial pressure and indices of brain oxygenation. As the patients' actual mean arterial pressure approached optimal mean arterial pressure, brain tissue oxygenation increased (p < 0.001). This positive relationship did not persist when the actual mean arterial pressure was above optimal mean arterial pressure.
Episodes of brain hypoxia in hypoxic ischemic brain injury are frequent, and perfusion within proximity of optimal mean arterial pressure is associated with increased brain tissue oxygenation. Pressure reactivity index can yield optimal mean arterial pressure, lower and upper limit of autoregulation in patients following cardiac arrest.
在心脏骤停后有发生缺氧缺血性脑损伤风险的患者中,我们试图:1)描述脑氧合情况并确定脑缺氧的发生率,2)使用压力反应指数描述自动调节情况,并确定最佳平均动脉压,以及 3)评估最佳平均动脉压与脑组织氧合之间的关系。
前瞻性干预研究。
四级重症监护病房。
心脏骤停后 10 分钟以上自主循环恢复且复苏后格拉斯哥昏迷量表评分<9 分的成年患者,在心脏骤停后 72 小时内。
所有患者均接受多模态神经监测,包括:1)脑组织氧合,2)颅内压,3)颈静脉连续血氧饱和度,4)近红外光谱评估局部氧饱和度,以及 5)基于压力反应指数的最佳平均动脉压、自动调节下限和上限的确定。我们还收集了平均动脉压、呼气末二氧化碳和温度。所有数据均使用 ICM+(剑桥企业,英国剑桥)脑监测软件以 300Hz 的频率捕获。
共纳入 10 例患者(7 例男性),中位年龄 47 岁(范围 20-71 岁),自主循环恢复时间为 22 分钟(12-36 分钟)。监测的中位时间为 47 小时(15-88 小时),从心脏骤停到纳入的中位时间为 15 小时(6-44 小时)。脑组织氧合的平均值为 23mmHg(SD 8mmHg),脑组织氧合低于 20mmHg 的时间百分比为 38%(6-100%)。压力反应指数的平均值为 0.23(0.27),压力反应指数大于 0.3 的时间百分比为 50%(12-91%)。最佳平均动脉压、自动调节下限和上限的平均值分别为 89mmHg(11mmHg)、82mmHg(8mmHg)和 96mmHg(9mmHg)。患者之间平均动脉压与脑氧合指数之间的关系存在明显的个体差异。当患者的实际平均动脉压接近最佳平均动脉压时,脑组织氧合增加(p<0.001)。当实际平均动脉压高于最佳平均动脉压时,这种正相关关系并未持续。
缺氧缺血性脑损伤患者中频发脑缺氧事件,接近最佳平均动脉压的灌注与增加的脑组织氧合相关。压力反应指数可在心脏骤停后患者中产生最佳平均动脉压、自动调节下限和上限。