Suppr超能文献

一种高通量成像方法,用于分析胚胎发育情况。

A high-content imaging approach to profile embryonic development.

机构信息

Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.

Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Development. 2019 Apr 11;146(7):dev174029. doi: 10.1242/dev.174029.

Abstract

The embryo is an important model for analyzing mechanisms of cell fate specification and tissue morphogenesis. Sophisticated lineage-tracing approaches for analyzing embryogenesis have been developed but are labor intensive and do not naturally integrate morphogenetic readouts. To enable the rapid classification of developmental phenotypes, we developed a high-content method that employs two custom strains: a Germ Layer strain that expresses nuclear markers in the ectoderm, mesoderm and endoderm/pharynx; and a Morphogenesis strain that expresses markers labeling epidermal cell junctions and the neuronal cell surface. We describe a procedure that allows simultaneous live imaging of development in 80-100 embryos and provide a custom program that generates cropped, oriented image stacks of individual embryos to facilitate analysis. We demonstrate the utility of our method by perturbing 40 previously characterized developmental genes in variants of the two strains containing RNAi-sensitizing mutations. The resulting datasets yielded distinct, reproducible signature phenotypes for a broad spectrum of genes that are involved in cell fate specification and morphogenesis. In addition, our analysis provides new evidence for MBK-2 function in mesoderm fate specification and LET-381 function in elongation.

摘要

胚胎是分析细胞命运特化和组织形态发生机制的重要模型。已经开发出了用于分析胚胎发生的复杂谱系追踪方法,但这些方法劳动强度大,并且不能自然地整合形态发生读数。为了能够快速分类发育表型,我们开发了一种高内涵方法,该方法使用两个定制菌株:一个胚层菌株,在外胚层、中胚层和内胚层/咽中表达核标记物;另一个形态发生菌株,表达标记表皮细胞连接和神经元细胞表面的标记物。我们描述了一种允许同时对 80-100 个胚胎进行活体成像的程序,并提供了一个自定义程序,该程序可以生成单个胚胎的裁剪、定向图像堆栈,以方便分析。我们通过在含有 RNAi 敏感突变的两种菌株的变体中扰动 40 个先前表征的发育基因,证明了我们方法的实用性。所得数据集产生了广泛涉及细胞命运特化和形态发生的基因的独特、可重复的特征表型。此外,我们的分析为 MBK-2 在中胚层命运特化中的功能以及 LET-381 在伸长中的功能提供了新的证据。

相似文献

1
A high-content imaging approach to profile embryonic development.
Development. 2019 Apr 11;146(7):dev174029. doi: 10.1242/dev.174029.
2
Roles of the Wnt effector POP-1/TCF in the C. elegans endomesoderm specification gene network.
Dev Biol. 2010 Apr 15;340(2):209-21. doi: 10.1016/j.ydbio.2009.09.042. Epub 2009 Oct 7.
3
Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis.
J Biol Chem. 2016 Jun 10;291(24):12501-12513. doi: 10.1074/jbc.M115.705426. Epub 2016 Apr 7.
5
Partially compromised specification causes stochastic effects on gut development in C. elegans.
Dev Biol. 2017 Jul 1;427(1):49-60. doi: 10.1016/j.ydbio.2017.05.007. Epub 2017 May 11.
6
Maternal deployment of the embryonic SKN-1-->MED-1,2 cell specification pathway in C. elegans.
Dev Biol. 2007 Jan 15;301(2):590-601. doi: 10.1016/j.ydbio.2006.08.029. Epub 2006 Aug 22.
7
E3 ubiquitin ligases promote progression of differentiation during C. elegans embryogenesis.
Dev Biol. 2015 Feb 15;398(2):267-79. doi: 10.1016/j.ydbio.2014.12.009. Epub 2014 Dec 15.
8
Comprehensive single cell-resolution analysis of the role of chromatin regulators in early C. elegans embryogenesis.
Dev Biol. 2015 Feb 15;398(2):153-62. doi: 10.1016/j.ydbio.2014.10.014. Epub 2014 Oct 28.
9
Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer.
Nature. 2015 Mar 12;519(7542):219-22. doi: 10.1038/nature13996. Epub 2014 Dec 10.
10
Reevaluation of the role of the med-1 and med-2 genes in specifying the Caenorhabditis elegans endoderm.
Genetics. 2005 Oct;171(2):545-55. doi: 10.1534/genetics.105.044909. Epub 2005 Jul 5.

引用本文的文献

2
Brief guide to Caenorhabditis elegans imaging and quantification.
Mol Cells. 2025 Jun 29;48(9):100249. doi: 10.1016/j.mocell.2025.100249.
3
Hybrid incompatibility emerges at the one-cell stage in interspecies embryos.
bioRxiv. 2024 Oct 24:2024.10.19.619171. doi: 10.1101/2024.10.19.619171.
4
Variants in LRRC7 lead to intellectual disability, autism, aggression and abnormal eating behaviors.
Nat Commun. 2024 Sep 10;15(1):7909. doi: 10.1038/s41467-024-52095-x.
5
Analysis of developmental gene expression using smFISH and staging of embryos.
bioRxiv. 2024 May 16:2024.05.15.594414. doi: 10.1101/2024.05.15.594414.
6
Automated profiling of gene function during embryonic development.
Cell. 2024 Jun 6;187(12):3141-3160.e23. doi: 10.1016/j.cell.2024.04.012. Epub 2024 May 16.
7
Selfish conflict underlies RNA-mediated parent-of-origin effects.
Nature. 2024 Apr;628(8006):122-129. doi: 10.1038/s41586-024-07155-z. Epub 2024 Mar 6.
8
Transcriptome age of individual cell types in .
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2216351120. doi: 10.1073/pnas.2216351120. Epub 2023 Feb 22.
9
An Exact Hypergraph Matching algorithm for posture identification in embryonic C. elegans.
PLoS One. 2022 Nov 29;17(11):e0277343. doi: 10.1371/journal.pone.0277343. eCollection 2022.
10
Computational modeling and analysis of the morphogenetic domain signaling networks regulating embryogenesis.
Comput Struct Biotechnol J. 2022 Jun 8;20:3653-3666. doi: 10.1016/j.csbj.2022.05.058. eCollection 2022.

本文引用的文献

1
The multipotency-to-commitment transition in Caenorhabditis elegans-implications for reprogramming from cells to organs.
FEBS Lett. 2018 Mar;592(6):838-851. doi: 10.1002/1873-3468.12977. Epub 2018 Feb 1.
2
Coordinated morphogenesis of neurons and glia.
Curr Opin Neurobiol. 2017 Dec;47:58-64. doi: 10.1016/j.conb.2017.09.011. Epub 2017 Oct 16.
3
Do as I say, Not(ch) as I do: Lateral control of cell fate.
Dev Biol. 2019 Mar 1;447(1):58-70. doi: 10.1016/j.ydbio.2017.09.032. Epub 2017 Sep 29.
4
5
What We Know and Do Not Know About Actin.
Handb Exp Pharmacol. 2017;235:331-347. doi: 10.1007/164_2016_44.
6
C. elegans Embryonic Morphogenesis.
Curr Top Dev Biol. 2016;116:597-616. doi: 10.1016/bs.ctdb.2015.11.012. Epub 2016 Feb 1.
7
Untwisting the Caenorhabditis elegans embryo.
Elife. 2015 Dec 3;4:e10070. doi: 10.7554/eLife.10070.
8
Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation.
Genetics. 2016 Jan;202(1):123-39. doi: 10.1534/genetics.115.183137. Epub 2015 Oct 4.
9
The Maternal-to-Zygotic Transition in C. elegans.
Curr Top Dev Biol. 2015;113:1-42. doi: 10.1016/bs.ctdb.2015.06.001. Epub 2015 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验