Quicke Peter, Song Chenchen, McKimm Eric J, Milosevic Milena M, Howe Carmel L, Neil Mark, Schultz Simon R, Antic Srdjan D, Foust Amanda J, Knöpfel Thomas
Department of Bioengineering, Imperial College London, London, United Kingdom.
Department of Medicine, Imperial College London, London, United Kingdom.
Front Cell Neurosci. 2019 Feb 14;13:39. doi: 10.3389/fncel.2019.00039. eCollection 2019.
Voltage imaging of many neurons simultaneously at single-cell resolution is hampered by the difficulty of detecting small voltage signals from overlapping neuronal processes in neural tissue. Recent advances in genetically encoded voltage indicator (GEVI) imaging have shown single-cell resolution optical voltage recordings in intact tissue through imaging naturally sparse cell classes, sparse viral expression, soma restricted expression, advanced optical systems, or a combination of these. Widespread sparse and strong transgenic GEVI expression would enable straightforward optical access to a densely occurring cell type, such as cortical pyramidal cells. Here we demonstrate that a recently described sparse transgenic expression strategy can enable single-cell resolution voltage imaging of cortical pyramidal cells in intact brain tissue without restricting expression to the soma. We also quantify the functional crosstalk in brain tissue and discuss optimal imaging rates to inform future GEVI experimental design.
在单细胞分辨率下同时对多个神经元进行电压成像,受到在神经组织中检测来自重叠神经突的小电压信号的困难的阻碍。基因编码电压指示剂(GEVI)成像的最新进展表明,通过对天然稀疏的细胞类型进行成像、稀疏病毒表达、体细胞限制性表达、先进光学系统或这些方法的组合,可以在完整组织中进行单细胞分辨率的光学电压记录。广泛的稀疏且强转基因GEVI表达将能够直接通过光学方法观察密集存在的细胞类型,如皮质锥体细胞。在这里,我们证明,一种最近描述的稀疏转基因表达策略可以在完整脑组织中实现皮质锥体细胞的单细胞分辨率电压成像,而无需将表达限制在体细胞。我们还对脑组织中的功能串扰进行了量化,并讨论了最佳成像速率,以为未来的GEVI实验设计提供参考。