Telliez Cécile, Sims Ruth, Faini Giulia, Berto Pascal, Papagiakoumou Eirini, Tanese Dimitrii, Accanto Nicolò
Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France.
Université Paris Cité, Paris 75006, France.
ACS Photonics. 2025 Apr 4;12(7):3296-3318. doi: 10.1021/acsphotonics.4c02101. eCollection 2025 Jul 16.
The possibility of using light to image and manipulate neuronal activity, at the heart of Neurophotonics, has provided new irreplaceable tools to study brain function. In particular, the combination of multiphoton microscopy and optogenetics allows researchers to interact with neuronal circuits with single-cell resolution in living brain tissues. However, significant optical challenges remain to empower new discoveries in Neuroscience. This Review focuses on three critical areas for future development: (1) expanding imaging and optogenetic stimulation to larger fields of view and faster acquisition speeds, while maintaining single-cell resolution and minimizing photodamage; (2) enabling access to deeper brain regions to study currently inaccessible neuronal circuits; and (3) developing optical techniques for studying natural behaviors in freely moving animals. For each of these challenges, we review the current state-of-the-art and suggest future directions with the potential to transform the field.
利用光对神经元活动进行成像和操控,这是神经光子学的核心,为研究脑功能提供了全新且不可替代的工具。特别是,多光子显微镜与光遗传学的结合使研究人员能够在活体脑组织中以单细胞分辨率与神经元回路进行交互。然而,要在神经科学领域实现新的发现,仍存在重大的光学挑战。本综述聚焦于未来发展的三个关键领域:(1)将成像和光遗传刺激扩展到更大的视野范围并提高采集速度,同时保持单细胞分辨率并将光损伤降至最低;(2)能够深入到更深的脑区,以研究目前难以触及的神经元回路;(3)开发用于研究自由活动动物自然行为的光学技术。针对这些挑战中的每一个,我们回顾了当前的技术水平,并提出了可能改变该领域的未来发展方向。