Chan Marjorie A, Bowen Brenda B, Corsetti Frank A, Farrand William H, Law Emily S, Newsom Horton E, Spear John R, Thompson David R
Department of Geology and Geophysics, The University of Utah, Salt Lake City, UT, United States.
Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.
Front Microbiol. 2019 Mar 5;10:147. doi: 10.3389/fmicb.2019.00147. eCollection 2019.
New approaches to blending geoscience, planetary science, microbiology-geobiology/ecology, geoinformatics and cyberinfrastructure technology disciplines in a holistic effort can be transformative to astrobiology explorations. Over the last two decades, overwhelming orbital evidence has confirmed the abundance of authigenic (, formed in place) minerals on Mars. On Earth, environments where authigenic minerals form provide a substrate for the preservation of microbial life. Similarly, extraterrestrial life is likely to be preserved where crustal minerals can record and preserve the biochemical mechanisms (i.e., biosignatures). The search for astrobiological evidence on Mars has focused on identifying past or present habitable environments - places that could support some semblance of life. Thus, authigenic minerals represent a promising habitable environment where extraterrestrial life could be recorded and potentially preserved over geologic time scales. Astrobiology research necessarily takes place over vastly different scales; from molecules to viruses and microbes to those of satellites and solar system exploration, but the differing scales of analyses are rarely connected quantitatively. The mismatch between the scales of these observations- from the macro- satellite mineralogical observations to the micro- microbial observations- limits the applicability of our astrobiological understanding as we search for records of life beyond Earth. Each-scale observation requires knowledge of the geologic context and the environmental parameters important for assessing habitability. Exploration efforts to search for extraterrestrial life should attempt to quantify both the geospatial context and the temporal/spatial relationships between microbial abundance and diversity within authigenic minerals at multiple scales, while assimilating resolutions from satellite observations to field measurements to microscopic analyses. Statistical measures, computer vision, and the geospatial synergy of Geographic Information Systems (GIS), can allow analyses of objective data-driven methods to locate, map, and predict where the "sweet spots" of habitable environments occur at multiple scales. This approach of science information architecture or an "Astrobiology Information System" can provide the necessary maps to guide researchers to discoveries via testing, visualizing, documenting, and collaborating on significant data relationships that will advance explorations for evidence of life in our solar system and beyond.
将地球科学、行星科学、微生物学-地球生物学/生态学、地理信息学和网络基础设施技术学科进行整体融合的新方法,可能会改变天体生物学的探索。在过去二十年中,大量轨道证据证实火星上存在丰富的自生(原地形成)矿物。在地球上,自生矿物形成的环境为微生物生命的保存提供了基质。同样,在地壳矿物能够记录和保存生化机制(即生物特征)的地方,外星生命也有可能被保存下来。在火星上寻找天体生物学证据的工作主要集中在识别过去或现在的宜居环境——那些能够支持某种形式生命存在的地方。因此,自生矿物代表了一个有前景的宜居环境,外星生命可能在其中被记录下来,并有可能在地质时间尺度上得以保存。天体生物学研究必然在截然不同的尺度上进行;从分子到病毒、微生物,再到卫星和太阳系探索的尺度,但不同尺度的分析很少进行定量关联。这些观测尺度之间的不匹配——从宏观的卫星矿物学观测到微观的微生物观测——限制了我们在寻找地球以外生命记录时天体生物学理解的适用性。每个尺度的观测都需要了解地质背景以及对评估宜居性至关重要的环境参数。寻找外星生命的探索工作应尝试在多个尺度上量化自生矿物内部微生物丰度和多样性之间的地理空间背景以及时间/空间关系,同时将卫星观测分辨率与实地测量分辨率以及微观分析分辨率进行整合。统计方法、计算机视觉以及地理信息系统(GIS)的地理空间协同作用,可以使基于客观数据驱动的方法进行分析,以定位、绘制并预测多个尺度上宜居环境的“最佳点”所在位置。这种科学信息架构方法或“天体生物学信息系统”可以提供必要的地图,通过对重要数据关系进行测试、可视化、记录和协作,引导研究人员取得发现,从而推动对太阳系及其他区域生命证据的探索。