Department of Molecular Medicine, The Scripps Research Institute , La Jolla , CA , USA.
Autophagy. 2019 Oct;15(10):1738-1756. doi: 10.1080/15548627.2019.1596475. Epub 2019 Apr 5.
Several lines of evidence support the occurrence of cross-regulation between the endocytic pathway and autophagy, but the molecular mechanisms regulating this process are not well-understood. Here, we show that the calcium sensor UNC13D regulates the molecular mechanism of late endosomal trafficking and endosomal maturation, and defects in UNC13D lead to macroautophagy upregulation. -null cells showed impaired endosomal trafficking and defective endocytic flux. The defective phenotypes were rescued by the expression of UNC13D but not by its STX7-binding-deficient mutant. This defective endosomal function in UNC13D-deficient cells resulted in increased autophagic flux, increased long-lived protein degradation, decreased SQSTM1/p62 protein levels and increased autolysosome formation as determined by biochemical, microscopy and structural methods. The autophagic phenotype was not associated with increased recruitment of the UNC13D-binding proteins and autophagy regulators, RAB11 or VAMP8, but was caused, at least in part, by TFEB-mediated upregulation of a subset of autophagic and lysosomal genes, including . Downregulation of TFEB decreased levels and decreased macroautophagy in -null cells. UNC13D upregulation corrected the defects in endolysosomal trafficking and decreased the number of accumulated autophagosomes in a cellular model of the lysosomal-storage disorder cystinosis, under both fed and starvation conditions, identifying UNC13D as an important new regulatory molecule of autophagy regulation in cells with lysosomal disorders. ACTB: actin, beta; CTSB: cathepsin B; EEA1: early endosome antigen 1; ESCRT: endosomal sorting complex required for transport; FHL3: familial hemophagocytic; lymphohistiocytosis type 3; HEX: hexosaminidase; HLH: hemophagocytic lymphohistiocytosis; LSD: lysosomal storage disorder; MEF: mouse embryonic fibroblast; SEM: standard errors of the mean; SNARE: soluble n-ethylmaleimide-sensitive-factor attachment receptor; STX: syntaxin; SYT7: synaptotagmin VII; TFE3: transcription factor E3; TFEB: transcription factor EB; TIRF: total internal reflection fluorescence ULK1: unc-51 like kinase 1; UNC13D: unc-13 homolog d; VAMP: vesicle-associate membrane protein; WT: wild-type.
有几条证据表明内吞途径和自噬之间存在交叉调节,但调节这一过程的分子机制尚不清楚。在这里,我们表明钙传感器 UNC13D 调节晚期内体运输和内体成熟的分子机制,UNC13D 的缺陷导致巨自噬的上调。UNC13D-/-细胞表现出内体运输受损和内吞作用缺陷。UNC13D 的表达可以挽救这些缺陷表型,但 STX7 结合缺陷型突变体则不能。UNC13D 缺陷细胞中这种有缺陷的内体功能导致自噬通量增加、长寿命蛋白降解增加、SQSTM1/p62 蛋白水平降低以及自噬溶酶体形成增加,这是通过生化、显微镜和结构方法确定的。自噬表型与 UNC13D 结合蛋白和自噬调节剂 RAB11 或 VAMP8 的募集增加无关,但至少部分是由 TFEB 介导的一组自噬和溶酶体基因的上调引起的,包括CTSB、CTSL 和HEX。TFEB 的下调降低了 -/-细胞中的 水平并减少了巨自噬。UNC13D 的上调纠正了溶酶体贮积病胱氨酸病细胞模型中内溶酶体运输的缺陷,并减少了积累自噬体的数量,无论是在喂养还是饥饿条件下,这表明 UNC13D 是溶酶体疾病细胞中自噬调节的一个重要新调节分子。ACTB:肌动蛋白,β;CTSB:组织蛋白酶 B;EEA1:早期内体抗原 1;ESCRT:内体分选复合物必需运输;FHL3:家族性噬血细胞性淋巴组织细胞增多症 3 型;HEX:己糖胺酶;HLH:噬血细胞性淋巴组织细胞增多症;LSD:溶酶体贮积病;MEF:小鼠胚胎成纤维细胞;SEM:均数的标准误差;SNARE:可溶性 N-乙基马来酰亚胺敏感因子附着受体;STX:突触融合蛋白;SYT7:突触结合蛋白 VII;TFE3:转录因子 E3;TFEB:转录因子 EB;TIRF:全内反射荧光 ULK1:UNC-51 样激酶 1;UNC13D:UNC-13 同源物 d;VAMP:囊泡相关膜蛋白;WT:野生型。