Suppr超能文献

空间调制在分子通信中的应用。

Spatial Modulation for Molecular Communication.

出版信息

IEEE Trans Nanobioscience. 2019 Jul;18(3):381-395. doi: 10.1109/TNB.2019.2905254. Epub 2019 Mar 15.

Abstract

In this paper, we propose an energy-efficient spatial modulation-based molecular communication (SM-MC) scheme, in which a transmitted symbol is composed of two parts, i.e., a space derived symbol and a concentration derived symbol. The space symbol is transmitted by embedding the information into the index of a single activated transmitter nanomachine. The concentration symbol is drawn according to the conventional concentration shift keying (CSK) constellation. Benefiting from a single active transmitter during each symbol period, SM-MC can avoid the inter-link interference problem existing in the current multiple-input multiple-output (MIMO) based MC schemes, which hence enables low-complexity symbol detection and performance improvement. Correspondingly, we propose a low-complexity scheme, which first detects the space symbol by energy comparison, and then detects the concentration symbol by the maximum ratio combining assisted CSK demodulation. In this paper, we analyze the symbol error rate (SER) of the SM-MC and of its special case, namely the space shift keying-based MC (SSK-MC), where only space symbol is transmitted and no CSK modulation is invoked. Finally, the analytical results are validated by computer simulations. Our studies demonstrate that both the SSK-MC and SM-MC are capable of achieving better SER performance than the conventional MIMO-MC and single-input single-output-based MC, when given the same symbol rate.

摘要

在本文中,我们提出了一种基于能量有效的空间调制的分子通信(SM-MC)方案,其中传输的符号由两部分组成,即空间符号和浓度符号。空间符号通过将信息嵌入到单个激活发送器纳米机器的索引中进行传输。浓度符号根据传统的浓度移位键控(CSK)星座绘制。受益于每个符号周期内只有一个活动的发送器,SM-MC 可以避免当前基于多输入多输出(MIMO)的 MC 方案中存在的链路间干扰问题,从而实现低复杂度的符号检测和性能提升。相应地,我们提出了一种低复杂度的方案,该方案首先通过能量比较检测空间符号,然后通过最大比合并辅助 CSK 解调检测浓度符号。在本文中,我们分析了 SM-MC 的符号误码率(SER)及其特例,即仅传输空间符号且不调用 CSK 调制的基于空间移位键控的 MC(SSK-MC)。最后,通过计算机仿真验证了分析结果。我们的研究表明,在相同符号率下,与传统的 MIMO-MC 和基于单输入单输出的 MC 相比,SSK-MC 和 SM-MC 都能够实现更好的 SER 性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验