Suppr超能文献

正常乳腺组织中 3D MR 指纹成像弛豫测量的可重复性和可再现性。

Repeatability and reproducibility of 3D MR fingerprinting relaxometry measurements in normal breast tissue.

机构信息

Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.

Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA.

出版信息

J Magn Reson Imaging. 2019 Oct;50(4):1133-1143. doi: 10.1002/jmri.26717. Epub 2019 Mar 20.

Abstract

BACKGROUND

The 3D breast magnetic resonance fingerprinting (MRF) technique enables T and T mapping in breast tissues. Combined repeatability and reproducibility studies on breast T and T relaxometry are lacking.

PURPOSE

To assess test-retest and two-visit repeatability and interscanner reproducibility of the 3D breast MRF technique in a single-institution setting.

STUDY TYPE

Prospective.

SUBJECTS

Eighteen women (median age 29 years, range, 22-33 years) underwent Visit 1 scans on scanner 1. Ten of these women underwent test-retest scan repositioning after a 10-minute interval. Thirteen women had Visit 2 scans within 7-15 days in same menstrual cycle. The remaining five women had Visit 2 scans in the same menstrual phase in next menstrual cycle. Five women were also scanned on scanner 2 at both visits for interscanner reproducibility.

FIELD STRENGTH/SEQUENCE: Two 3T MR scanners with the 3D breast MRF technique.

ASSESSMENT

T and T MRF maps of both breasts.

STATISTICAL TESTS

Mean T and T values for normal fibroglandular tissues were quantified at all scans. For variability, between and within-subjects coefficients of variation (bCV and wCV, respectively) were assessed. Repeatability was assessed with Bland-Altman analysis and coefficient of repeatability (CR). Reproducibility was assessed with interscanner coefficient of variation (CoV) and Wilcoxon signed-rank test.

RESULTS

The bCV at test-retest scans was 9-12% for T , 7-17% for T , wCV was <4% for T , and <7% for T . For two visits in same menstrual cycle, bCV was 10-15% for T , 13-17% for T , wCV was <7% for T and <5% for T . For two visits in the same menstrual phase, bCV was 6-14% for T , 15-18% for T , wCV was <7% for T , and <9% for T . For test-retest scans, CR for T and T were 130 msec and 11 msec. For two visit scans, CR was <290 msec for T and 10-14 msec for T . Interscanner CoV was 3.3-3.6% for T and 5.1-6.6% for T , with no differences between interscanner measurements (P = 1.00 for T , P = 0.344 for T ).

DATA CONCLUSION

3D breast MRF measurements are repeatable across scan timings and scanners and may be useful in clinical applications in breast imaging.

LEVEL OF EVIDENCE

2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1133-1143.

摘要

背景

3D 乳腺磁共振指纹(MRF)技术可在乳腺组织中进行 T1 和 T2 映射。目前缺乏关于乳腺 T1 和 T2 弛豫度的重复性和再现性的综合研究。

目的

在单机构环境中评估 3D 乳腺 MRF 技术的测试-重测和两次访问的重复性以及扫描仪间的可重复性。

研究类型

前瞻性。

受试者

18 名女性(中位年龄 29 岁,范围 22-33 岁)在扫描仪 1 上进行了第一次就诊扫描。其中 10 名女性在 10 分钟的间隔后进行了测试-重测扫描重新定位。13 名女性在相同的月经周期内的 7-15 天内进行了第二次就诊扫描。其余 5 名女性在接下来的月经周期的相同月经阶段进行了第二次就诊扫描。还有 5 名女性在两次就诊时均在扫描仪 2 上进行了扫描仪间的可重复性扫描。

磁场强度/序列:两台 3T 磁共振扫描仪,均配备了 3D 乳腺 MRF 技术。

评估

双侧乳房的 T1 和 T2 MRF 图谱。

统计检验

所有扫描中均对正常纤维腺体组织的平均 T1 和 T2 值进行了量化。为了评估变异性,分别评估了组内和组间变异系数(bCV 和 wCV)。采用 Bland-Altman 分析和可重复性系数(CR)评估重复性。采用扫描仪间变异系数(CoV)和 Wilcoxon 符号秩检验评估再现性。

结果

测试-重测扫描的 bCV 为 T1 9-12%,T2 7-17%,wCV 为 T1 <4%,T2 <7%。在同一月经周期的两次就诊中,T1 的 bCV 为 10-15%,T2 的 bCV 为 13-17%,wCV 为 T1 <7%,T2 <5%。在同一月经阶段的两次就诊中,T1 的 bCV 为 6-14%,T2 的 bCV 为 15-18%,wCV 为 T1 <7%,T2 <9%。对于测试-重测扫描,T1 和 T2 的 CR 分别为 130 毫秒和 11 毫秒。对于两次就诊扫描,T1 的 CR 小于 290 毫秒,T2 的 CR 为 10-14 毫秒。扫描仪间 CoV 为 T1 3.3-3.6%,T2 5.1-6.6%,两次扫描之间无差异(T1 的 P 值=1.00,T2 的 P 值=0.344)。

数据结论

3D 乳腺 MRF 测量在扫描时间和扫描仪之间具有可重复性,可能在乳腺成像的临床应用中有用。

证据水平

2 技术功效:第 2 阶段 J. Magn. Reson. Imaging 2019;50:1133-1143.

相似文献

1
Repeatability and reproducibility of 3D MR fingerprinting relaxometry measurements in normal breast tissue.
J Magn Reson Imaging. 2019 Oct;50(4):1133-1143. doi: 10.1002/jmri.26717. Epub 2019 Mar 20.
4
Repeatability of Quantitative Knee Cartilage T, T, and T Mapping With 3D-MRI Fingerprinting.
J Magn Reson Imaging. 2024 Aug;60(2):688-699. doi: 10.1002/jmri.29068. Epub 2023 Oct 26.
5
Multicenter Repeatability and Reproducibility of MR Fingerprinting in Phantoms and in Prostatic Tissue.
Magn Reson Med. 2022 Oct;88(4):1818-1827. doi: 10.1002/mrm.29264. Epub 2022 Jun 17.
7
T1, T2, and Fat Fraction Cardiac MR Fingerprinting: Preliminary Clinical Evaluation.
J Magn Reson Imaging. 2021 Apr;53(4):1253-1265. doi: 10.1002/jmri.27415. Epub 2020 Oct 29.
8
Rapid Radial T and T Mapping of the Hip Articular Cartilage With Magnetic Resonance Fingerprinting.
J Magn Reson Imaging. 2019 Sep;50(3):810-815. doi: 10.1002/jmri.26615. Epub 2018 Dec 24.
9
Reproducibility and Repeatability of MR Fingerprinting Relaxometry in the Human Brain.
Radiology. 2019 Aug;292(2):429-437. doi: 10.1148/radiol.2019182360. Epub 2019 Jun 18.
10
Simultaneous Mapping of T and T Using Cardiac Magnetic Resonance Fingerprinting in a Cohort of Healthy Subjects at 1.5T.
J Magn Reson Imaging. 2020 Oct;52(4):1044-1052. doi: 10.1002/jmri.27155. Epub 2020 Mar 28.

引用本文的文献

1
Repeatability of quantitative MR fingerprinting for T and T measurements of metastatic bone in prostate cancer patients.
Eur Radiol. 2025 May;35(5):2487-2498. doi: 10.1007/s00330-024-11162-z. Epub 2024 Nov 6.
2
Emerging Trends in Magnetic Resonance Fingerprinting for Quantitative Biomedical Imaging Applications: A Review.
Bioengineering (Basel). 2024 Feb 28;11(3):236. doi: 10.3390/bioengineering11030236.
6
Feasibility study of 2D Dixon-Magnetic Resonance Fingerprinting (MRF) of breast cancer.
Eur J Radiol Open. 2022 Nov 16;9:100453. doi: 10.1016/j.ejro.2022.100453. eCollection 2022.
7
MR fingerprinting of the prostate.
MAGMA. 2022 Aug;35(4):557-571. doi: 10.1007/s10334-022-01012-8. Epub 2022 Apr 13.
8
Repeatability of MR fingerprinting in normal cervix and utility in cervical carcinoma.
Quant Imaging Med Surg. 2021 Sep;11(9):3990-4003. doi: 10.21037/qims-20-1382.
9
Magnetic resonance fingerprinting: an overview.
Eur J Nucl Med Mol Imaging. 2021 Dec;48(13):4189-4200. doi: 10.1007/s00259-021-05384-2. Epub 2021 May 26.
10
Whole-brain 3D MR fingerprinting brain imaging: clinical validation and feasibility to patients with meningioma.
MAGMA. 2021 Oct;34(5):697-706. doi: 10.1007/s10334-021-00924-1. Epub 2021 May 4.

本文引用的文献

1
Three-dimensional MR Fingerprinting for Quantitative Breast Imaging.
Radiology. 2019 Jan;290(1):33-40. doi: 10.1148/radiol.2018180836. Epub 2018 Oct 30.
2
Test-retest repeatability and reproducibility of ADC measures by breast DWI: Results from the ACRIN 6698 trial.
J Magn Reson Imaging. 2019 Jun;49(6):1617-1628. doi: 10.1002/jmri.26539. Epub 2018 Oct 22.
4
Role of quantitative analysis of T2 relaxation time in differentiating benign from malignant breast lesions.
J Int Med Res. 2018 May;46(5):1928-1935. doi: 10.1177/0300060517721071. Epub 2018 Mar 20.
5
Influence of B-Inhomogeneity on Pharmacokinetic Modeling of Dynamic Contrast-Enhanced MRI: A Simulation Study.
Korean J Radiol. 2017 Jul-Aug;18(4):585-596. doi: 10.3348/kjr.2017.18.4.585. Epub 2017 May 19.
6
Changes of T2 Relaxation Time From Neoadjuvant Chemotherapy in Breast Cancer Lesions.
Iran J Radiol. 2016 Jan 9;13(3):e24014. doi: 10.5812/iranjradiol.24014. eCollection 2016 Jul.
7
MR fingerprinting for rapid quantification of myocardial T , T , and proton spin density.
Magn Reson Med. 2017 Apr;77(4):1446-1458. doi: 10.1002/mrm.26216. Epub 2016 Apr 1.
8
MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout.
Magn Reson Med. 2015 Dec;74(6):1621-31. doi: 10.1002/mrm.25559. Epub 2014 Dec 9.
9
Quantitative multimodality imaging in cancer research and therapy.
Nat Rev Clin Oncol. 2014 Nov;11(11):670-80. doi: 10.1038/nrclinonc.2014.134. Epub 2014 Aug 12.
10
Repeatability of quantitative MRI measurements in normal breast tissue.
Transl Oncol. 2014 Feb 1;7(1):130-7. doi: 10.1593/tlo.13841. eCollection 2014 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验