Suppr超能文献

生物液晶的进展。

Advances in Biological Liquid Crystals.

机构信息

Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, 362200, China.

Third Institute of Physics-Biophysics, University of Göttingen, 37077, Göttingen, Germany.

出版信息

Small. 2019 May;15(18):e1900019. doi: 10.1002/smll.201900019. Epub 2019 Mar 20.

Abstract

Biological liquid crystals, a rich set of soft materials with rod-like structures widely existing in nature, possess typical lyotropic liquid crystalline phase properties both in vitro (e.g., cellulose, peptides, and protein assemblies) and in vivo (e.g., cellular lipid membrane, packed DNA in bacteria, and aligned fibroblasts). Given the ability to undergo phase transition in response to various stimuli, numerous practices are exercised to spatially arrange biological liquid crystals. Here, a fundamental understanding of interactions between rod-shaped biological building blocks and their orientational ordering across multiple length scales is addressed. Discussions are made with regard to the dependence of physical properties of nonmotile objects on the first-order phase transition and the coexistence of multi-phases in passive liquid crystalline systems. This work also focuses on how the applied physical stimuli drives the reorganization of constituent passive particles for a new steady-state alignment. A number of recent progresses in the dynamics behaviors of active liquid crystals are presented, and particular attention is given to those self-propelled animate elements, like the formation of motile topological defects, active turbulence, correlation of orientational ordering, and cellular functions. Finally, future implications and potential applications of the biological liquid crystalline materials are discussed.

摘要

生物液晶,一类具有棒状结构的丰富的软物质集合,在体外(如纤维素、肽和蛋白质组装体)和体内(如细胞脂质膜、细菌中排列的 DNA 和排列整齐的成纤维细胞)均具有典型的溶致液晶相性质。鉴于其能够对各种刺激发生相转变的能力,人们进行了大量实践以空间排列生物液晶。本文主要研究棒状生物构建基元之间的相互作用及其在多个长度尺度上的取向有序性。文中讨论了无动力物体的物理性质对一级相变的依赖性以及无源液晶系统中多相共存的问题。本文还重点研究了施加的物理刺激如何驱动组成无源粒子的重新排列以达到新的稳定态排列。本文还介绍了活性液晶动力学行为的最新进展,并特别关注那些自主运动的活性元素,如可移动拓扑缺陷的形成、活性湍流、取向有序的相关性和细胞功能。最后,讨论了生物液晶材料的未来意义和潜在应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验