Geo-information Processing Department, ITC Faculty, University of Twente, Hengelosestraat 99, 7514 AE Enschede, The Netherlands.
Sensors (Basel). 2019 Mar 19;19(6):1372. doi: 10.3390/s19061372.
Smart cities are urban environments where Internet of Things (IoT) devices provide a continuous source of data about urban phenomena such as traffic and air pollution. The exploitation of the spatial properties of data enables situation and context awareness. However, the integration and analysis of data from IoT sensing devices remain a crucial challenge for the development of IoT applications in smart cities. Existing approaches provide no or limited ability to perform spatial data analysis, even when spatial information plays a significant role in decision making across many disciplines. This work proposes a generic approach to enabling spatiotemporal capabilities in information services for smart cities. We adopted a multidisciplinary approach to achieving data integration and real-time processing, and developed a reference architecture for the development of event-driven applications. This type of applications seamlessly integrates IoT sensing devices, complex event processing, and spatiotemporal analytics through a processing workflow for the detection of geographic events. Through the implementation and testing of a system prototype, built upon an existing sensor network, we demonstrated the feasibility, performance, and scalability of event-driven applications to achieve real-time processing capabilities and detect geographic events.
智慧城市是物联网 (IoT) 设备提供有关城市现象(如交通和空气污染)的连续数据来源的城市环境。数据的空间属性的利用实现了情况和上下文感知。然而,物联网传感设备的数据集成和分析仍然是物联网应用在智慧城市中发展的关键挑战。现有的方法要么提供有限的能力来执行空间数据分析,即使在空间信息在许多学科的决策中起着重要作用的情况下也是如此。这项工作提出了一种在智慧城市的信息服务中启用时空功能的通用方法。我们采用了一种多学科的方法来实现数据集成和实时处理,并为事件驱动的应用程序开发了一个参考架构。这种类型的应用程序通过用于检测地理事件的处理工作流,无缝地集成物联网传感设备、复杂事件处理和时空分析。通过在现有的传感器网络上构建的系统原型的实现和测试,我们展示了事件驱动的应用程序实现实时处理能力和检测地理事件的可行性、性能和可扩展性。