Suppr超能文献

人类微生物组相关疾病的多样性-疾病关系和共享物种分析。

Diversity-disease relationships and shared species analyses for human microbiome-associated diseases.

机构信息

Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.

Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.

出版信息

ISME J. 2019 Aug;13(8):1911-1919. doi: 10.1038/s41396-019-0395-y. Epub 2019 Mar 20.

Abstract

Diversity indices have been routinely computed in the study of human microbiome-associated diseases (MADs). However, it is still unclear whether there is a consistent diversity-disease relationship (DDR) for the human MADs, and whether there are consistent differences in the taxonomic composition of microbiomes sampled from healthy versus diseased individuals. Here we reanalyzed raw data and used a meta-analysis to compare the microbiome diversity and composition of healthy versus diseased individuals in 41 comparisons extracted from 27 previously published studies of human MADs. In the DDR analysis, the average effect size across studies did not differ from zero for a comparison of healthy versus diseased individuals. In 30 of 41 comparisons (73%) there was no significant difference in microbiome diversity of healthy versus diseased individuals, or of different disease classes. For the species composition analysis (shared species analysis), the effect sizes were significantly different from zero. In 33 of 41 comparisons (80%), there were fewer OTUs (operational taxonomic units) shared between healthy and diseased individuals than expected by chance, but with 49% (20 of 41 comparisons) statistically significant. These results imply that the taxonomic composition of disease-associated microbiomes is often distinct from that of healthy individuals. Because species composition changes with disease state, some microbiome OTUs may serve as potential diagnostic indicators of disease. However, the overall species diversity of human microbiomes is not a reliable indicator of disease.

摘要

多样性指数已在人类微生物组相关疾病 (MADs) 的研究中得到常规计算。然而,目前尚不清楚人类 MADs 是否存在一致的多样性-疾病关系 (DDR),以及来自健康个体和患病个体的微生物组的分类组成是否存在一致的差异。在这里,我们重新分析了原始数据,并使用荟萃分析比较了 27 项先前发表的人类 MAD 研究中提取的 41 项比较的健康个体与患病个体的微生物组多样性和组成。在 DDR 分析中,健康个体与患病个体比较的研究平均效应大小不显著不同于零。在 41 项比较中的 30 项(73%)中,健康个体与患病个体之间的微生物组多样性或不同疾病类别的微生物组多样性没有显著差异。对于物种组成分析(共享物种分析),效应大小显著不等于零。在 41 项比较中的 33 项(80%)中,健康个体和患病个体之间共享的 OTUs(操作分类单元)比预期的随机情况少,但有 49%(20 项比较)具有统计学意义。这些结果表明,与疾病相关的微生物组的分类组成通常与健康个体不同。由于物种组成随疾病状态而变化,一些微生物组 OTUs 可能作为疾病的潜在诊断指标。然而,人类微生物组的整体物种多样性不是疾病的可靠指标。

相似文献

10
Integrated diversity and shared species analyses of human viromes.人类病毒组的综合多样性和共享物种分析。
Arch Virol. 2021 Oct;166(10):2743-2749. doi: 10.1007/s00705-021-05157-0. Epub 2021 Jul 29.

引用本文的文献

本文引用的文献

1
The healthy human microbiome.健康的人类微生物组。
Genome Med. 2016 Apr 27;8(1):51. doi: 10.1186/s13073-016-0307-y.
2
Frontiers in research on biodiversity and disease.生物多样性与疾病研究前沿
Ecol Lett. 2015 Oct;18(10):1119-33. doi: 10.1111/ele.12479. Epub 2015 Aug 10.
4
Waste not, want not: why rarefying microbiome data is inadmissible.不浪费,不匮乏:为何微生物组数据稀疏化不可取。
PLoS Comput Biol. 2014 Apr 3;10(4):e1003531. doi: 10.1371/journal.pcbi.1003531. eCollection 2014 Apr.
5
Vaginal microbiome: rethinking health and disease.阴道微生物组:重新思考健康与疾病。
Annu Rev Microbiol. 2012;66:371-89. doi: 10.1146/annurev-micro-092611-150157. Epub 2012 Jun 28.
6
Analyses of the microbial diversity across the human microbiome.人类微生物组中微生物多样性的分析。
PLoS One. 2012;7(6):e32118. doi: 10.1371/journal.pone.0032118. Epub 2012 Jun 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验