Cousin-Saint-Remi Julien, Van der Perre Stijn, Segato Tiriana, Delplancke Marie-Paule, Goderis Steven, Terryn Herman, Baron Gino, Denayer Joeri
Department of Materials Engineering, Characterization, Synthesis and Recycling , Université Libre de Bruxelles , B-1050 Bruxelles , Belgium.
ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13694-13703. doi: 10.1021/acsami.9b00521. Epub 2019 Apr 1.
Shaping metal-organic frameworks (MOFs) into robust particles with a controllable size is of large interest to the field of adsorption. Therefore, a method is presented here to produce robust MOF beads of different sizes, ranging from 250 μm to several millimeters, which, moreover, preserve the adsorption properties of the unformulated MOF. A simple, mild, and flexible method is demonstrated with the zeolitic imidazolate framework-8 (ZIF-8)/polyvinyl formal composite material. The properties of the composite material are determined via optical imaging, scanning electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, X-ray diffraction, mercury intrusion, argon porosimetry and pycnometry as well as thermogravimetric analysis/differential scanning calorimetry, crush strength tests, and immersion experiments. The proposed method allows the production of resistant particles with a high MOF loading (up to 85 wt %) and remarkable structural and textural properties required for adsorptive separation processes, including a preserved ZIF-8 crystalline structure, microporosity, and a narrow macropore size distribution (1.27 μm average). The particles show a spherical shape with an average aspect ratio of 0.85. The stability tests demonstrated that the composite MOF material exhibits a high mechanical strength (3.09 N/Pc crushing strength) almost equivalent to that of a widely used commercial zeolite material. Furthermore, the material remains stable up to 200 °C and in most solvents. The adsorption properties are explored via static and dynamic experiments in the vapor and liquid phases. The results show that the adsorption capacities are only reduced in proportion to the binder content compared with the pristine material, indicating no binder intrusion in the ZIF-8 pores. Fixed-bed experiments demonstrate the remarkable separation performance in the vapor phase, whereas mass transfer limitations arise in the liquid phase with increasing flow rate. The mass transfer limitations are attributed to the diffusion in the macropores or through the ZIF-8 crystal outer layer.
将金属有机框架材料(MOFs)制成尺寸可控的坚固颗粒,在吸附领域备受关注。因此,本文提出了一种制备不同尺寸(250μm至几毫米)坚固MOF珠粒的方法,而且这些珠粒保留了未成型MOF的吸附特性。以沸石咪唑酯骨架材料-8(ZIF-8)/聚乙烯醇缩甲醛复合材料为例,展示了一种简单、温和且灵活的方法。通过光学成像、扫描电子显微镜、能量色散X射线光谱、电感耦合等离子体质谱、X射线衍射、压汞法、氩气孔隙率测定法和比重瓶法以及热重分析/差示扫描量热法、抗压强度测试和浸泡实验来确定复合材料的性能。所提出的方法能够制备出具有高MOF负载量(高达85 wt%)且具备吸附分离过程所需显著结构和织构特性的抗性颗粒,包括保留的ZIF-8晶体结构、微孔性以及狭窄的大孔尺寸分布(平均1.27μm)。这些颗粒呈球形,平均纵横比为0.85。稳定性测试表明,复合MOF材料表现出几乎与广泛使用的商业沸石材料相当的高机械强度(抗压强度为3.09 N/Pc)。此外,该材料在高达200°C的温度下以及在大多数溶剂中都保持稳定。通过在气相和液相中的静态和动态实验来探索其吸附性能。结果表明,与原始材料相比,吸附容量仅按粘合剂含量的比例降低,这表明粘合剂未侵入ZIF-8孔中。固定床实验证明了其在气相中的显著分离性能,而在液相中随着流速增加会出现传质限制。传质限制归因于大孔内或通过ZIF-8晶体外层的扩散。