Suppr超能文献

已知化合物与新的启示:基于类黄酮的生物活性的结构和电子基础。

Known compounds and new lessons: structural and electronic basis of flavonoid-based bioactivities.

机构信息

Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, India.

Amity Institute of Biotechnology, Amity University, Panvel, Maharashtra, India.

出版信息

J Biomol Struct Dyn. 2020 Mar;38(4):1168-1184. doi: 10.1080/07391102.2019.1597770. Epub 2019 Apr 7.

Abstract

Flavonoids correspond to a major class of polyphenolic phytochemicals with flavone as major parent scaffold. This class of compounds is attributed with very rich nutritional as well as therapeutic values. The present study focuses on a panel of 16 flavonoid molecules that are demonstrated to exhibit various bioactivities like anti-angiogenic, anti-inflammatory as well as possess antioxidant potential. The electronic basis of these bioactivities is rarely explored, and structural basis of flavonoid-induced cyclooxygenase (COX) inhibition has still remained an uncharted area. The current report thus focuses on providing an electronic explanation of these bioactivities using density functional theory-based quantum chemical descriptors. We also attempt to provide a structure-activity relation model for COX by inhibition of these 16 flavonoids using molecular docking. Here, we report molecular dynamics data from 16 flavonoid-COX-2 complexes performed for 50 nanoseconds each that demonstrates key structural and dynamic aspects of flavonoid-based COX inhibition in light of observed experimental facts. Interaction analysis and evaluation of side-chain dynamics presented in current study are well in agreement with the empirical study and is hoped to pave new avenues towards design and development of COX-2 selective chemical agents. Abbreviations2'HFN-2'hydroxy flavonone2D2 dimension3D3 dimension3H7MF3-hydroxy-7-methoxy flavone4'HFN-4'hydroxy flavonone4'MF- 4'methoxy flavone7HFN7-hydroxy flavononeCHARMMChemistry at Harvard Macromolecular MechanicsCOXcyclooxygenaseCOX-1cyclooxygenase-1COX-2cyclooxygenase-2DMdipole momentDPPH- 2, 2diphenyl-1-picryl hydrazineEAelectron affinitiesEGFRepidermal growth factor receptorE-HOMOHighest occupied molecular orbital energyE-LUMOLowest unoccupied molecular orbital energyEPAeicosapentaenoic acidFROG2FRee Online druG conformation generationGAGenetic AlgorithmGROMACSGROningen MAchine for Chemical SimulationsHOMOHighest occupied molecular orbitalIPIonization potentialLOMOLowest unoccupied molecular orbitalMDMolecular dynamicsMOMolecular orbitalNAMDNanoscale Molecular DynamicsNSAIDsNon-Steroidal Anti Inflammatory DrugsNsnanosecondsNVEEnsemble-constant-energy, constant-volume, Constant particle ensemblePDB-IDProtein Data Bank IdentifierPMEParticle Mesh EwaldPyRXPython PrescriptionRMSDRoot-Mean-Square DeviationRMSFRoot-Mean-Square FluctuationRLSreactive lipid speciesROSReactive Oxygen SpeciesSASAsolvent accessible surface areaSMILESsimplified molecular-input line-entry systemSORsuperoxide anion radicalUFFUniversal force fieldVEGFvascular endothelial growth factorVEGFRvascular endothelial growth factor receptorVMDVisual molecular dynamicsCommunicated by Ramaswamy H. Sarma.

摘要

类黄酮属于多酚类植物化学物质的主要类别,以黄酮为主要母体支架。这类化合物具有非常丰富的营养和治疗价值。本研究集中于一组 16 种被证明具有多种生物活性的类黄酮分子,如抗血管生成、抗炎和抗氧化潜力。这些生物活性的电子基础很少被探索,而黄酮类诱导的环氧化酶 (COX) 抑制的结构基础仍然是一个未知领域。本报告因此侧重于使用基于密度泛函理论的量子化学描述符提供这些生物活性的电子解释。我们还试图通过分子对接抑制这 16 种黄酮类化合物来建立 COX 的构效关系模型。在这里,我们报告了来自 16 种黄酮类化合物-COX-2 复合物的分子动力学数据,每个复合物的模拟时间为 50 纳秒,这些数据展示了基于观察到的实验事实的基于黄酮类化合物的 COX 抑制的关键结构和动态方面。目前研究中的相互作用分析和侧链动力学评估与经验研究非常吻合,并有望为 COX-2 选择性化学试剂的设计和开发开辟新途径。缩写词2'HFN-2'-羟基黄酮2D2 维 3D3 维 3H7MF-3-羟基-7-甲氧基黄酮4'HFN-4'-羟基黄酮4'-MF-4'-甲氧基黄酮7HFN-7-羟基黄酮CHARMM-哈佛大分子力学化学COX-环氧化酶COX-1-环氧化酶-1COX-2-环氧化酶-2DM-偶极矩DPPH-2,2-二苯基-1-苦基肼EA-电子亲和力EGFp-表皮生长因子受体E-HOMO-最高占据分子轨道能量E-LUMO-最低未占据分子轨道能量EPA-二十碳五烯酸FROG2F-在线药物构象生成算法遗传算法GROMACS-格罗宁根分子模拟GROningen MAchine for Chemical SimulationsHOMO-最高占据分子轨道IPI-电离能LOMO-最低未占据分子轨道MD-分子动力学MOM-分子轨道NAMDNs-纳秒NVE-等能量、等体积、等粒子系综PDB-ID-蛋白质数据库标识符PME-粒子网格 EwaldPyRX-Python 处方RMSD-均方根偏差RMSF-均方根波动RLS-反应性脂质物种ROS-活性氧SAS-溶剂可及表面积SMILES-简化分子输入行进式SOR-超氧阴离子自由基UFF-通用力场VEGF-血管内皮生长因子VEGFR-血管内皮生长因子受体VMD-可视化分子动力学由 Ramaswamy H. Sarma 传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验