Suppr超能文献

通过丹磺酰氯衍生化增强饼干中 4(5)-甲基咪唑的液相色谱-离子阱质谱分析。

Enhancement of liquid chromatography-ion trap mass spectrometry analysis of 4(5)-methylimidazole in biscuits through derivatization with dansyl chloride.

机构信息

College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510640, China.

出版信息

J Chromatogr A. 2019 Jul 5;1596:1-7. doi: 10.1016/j.chroma.2019.02.061. Epub 2019 Feb 27.

Abstract

The presence of potential carcinogen 4(5)-Methylimidazole (4-MeI) in foods causes much concern, stressing the need of a sensitive determination means. Here, we proposed a high-sensitivity method to determine 4-MeI in biscuits using dansyl chloride derivatization and disperse liquid-liquid micro-extraction (DLLME) followed by a liquid chromatography-ion trap mass spectrometry (LC-IT-MS) analysis. This developed method was subsequently compared to the solid phase extraction combining with liquid chromatography-triple quadrupole mass spectrometry (SPE-LC-QqQ-MS) method. The optimized derivatization conditions were 30 °C and 10 min. Results suggested that the column retention time (RT) was significantly extended, and the MS signal response of 4-MeI-dansyl derivative was also amplified. The developed DLLME-LC-IT-MS method in 4-MeI determination provided satisfactory linearity in a range of 0.5-300 ng/mL (R > 0.9991), inter-day accuracy (87-102%) and precision (%RSD ≤ 13.6%) with the quantification limit of 0.2 ng/mL, which obtained similar results comparing to the conventional SPE-LC-QqQ-MS method.

摘要

食品中存在潜在致癌物 4(5)-甲基咪唑(4-MeI)引起了广泛关注,强调了需要一种灵敏的测定方法。在这里,我们提出了一种使用丹磺酰氯衍生化和分散液液微萃取(DLLME)结合液相色谱-离子阱质谱(LC-IT-MS)分析测定饼干中 4-MeI 的高灵敏度方法。该方法随后与固相萃取结合液相色谱-三重四极杆质谱(SPE-LC-QqQ-MS)法进行了比较。优化的衍生化条件为 30°C 和 10 min。结果表明,柱保留时间(RT)显著延长,4-MeI-丹磺酰衍生物的 MS 信号响应也得到增强。开发的 DLLME-LC-IT-MS 方法用于 4-MeI 的测定,在 0.5-300 ng/mL 范围内具有令人满意的线性关系(R > 0.9991)、日内准确度(87-102%)和精密度(%RSD ≤ 13.6%),定量限为 0.2 ng/mL,与传统的 SPE-LC-QqQ-MS 方法得到的结果相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验