Department of Radiological Sciences, Medical Imaging Informatics, University of California, Los Angeles, California, USA
Department of Radiological Sciences, Medical Imaging Informatics, University of California, Los Angeles, California, USA.
Thorax. 2019 Jun;74(6):551-563. doi: 10.1136/thoraxjnl-2018-212413. Epub 2019 Mar 21.
INTRODUCTION: We performed an external validation of the Brock model using the National Lung Screening Trial (NLST) data set, following strict guidelines set forth by the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis statement. We report how external validation results can be interpreted and highlight the role of recalibration and model updating. MATERIALS AND METHODS: We assessed model discrimination and calibration using the NLST data set. Adhering to the inclusion/exclusion criteria reported by McWilliams , we identified 7879 non-calcified nodules discovered at the baseline low-dose CT screen with 2 years of follow-up. We characterised differences between Pan-Canadian Early Detection of Lung Cancer Study and NLST cohorts. We calculated the slope on the prognostic index and the intercept coefficient by fitting the original Brock model to NLST. We also assessed the impact of model recalibration and the addition of new covariates such as body mass index, smoking status, pack-years and asbestos. RESULTS: While the area under the curve (AUC) of the model was good, 0.905 (95% CI 0.882 to 0.928), a histogram plot showed that the model poorly differentiated between benign and malignant cases. The calibration plot showed that the model overestimated the probability of cancer. In recalibrating the model, the coefficients for emphysema, spiculation and nodule count were updated. The updated model had an improved calibration and achieved an optimism-corrected AUC of 0.912 (95% CI 0.891 to 0.932). Only pack-year history was found to be significant (p<0.01) among the new covariates evaluated. CONCLUSION: While the Brock model achieved a high AUC when validated on the NLST data set, the model benefited from updating and recalibration. Nevertheless, covariates used in the model appear to be insufficient to adequately discriminate malignant cases.
简介:我们使用国家肺癌筛查试验(NLST)数据集,根据个体预后或诊断的多变量预测模型透明报告的严格准则,对 Brock 模型进行了外部验证。我们报告了如何解释外部验证结果,并强调了重新校准和模型更新的作用。
材料和方法:我们使用 NLST 数据集评估了模型的区分度和校准度。根据 McWilliams 报告的纳入/排除标准,我们确定了 7879 个在基线低剂量 CT 筛查中发现的非钙化结节,这些结节有 2 年的随访。我们描述了 Pan-Canadian Early Detection of Lung Cancer Study 和 NLST 队列之间的差异。我们通过将原始 Brock 模型拟合到 NLST 来计算预后指数的斜率和截距系数。我们还评估了模型重新校准和添加新协变量(如体重指数、吸烟状况、吸烟年数和石棉)的影响。
结果:虽然模型的曲线下面积(AUC)良好,为 0.905(95%CI 0.882 至 0.928),但直方图显示模型在区分良性和恶性病例方面表现不佳。校准图显示模型高估了癌症的概率。在重新校准模型时,更新了肺气肿、毛刺和结节数的系数。更新后的模型校准度得到改善,实现了校正后的 AUC 为 0.912(95%CI 0.891 至 0.932)。在评估的新协变量中,只有吸烟年数被发现具有统计学意义(p<0.01)。
结论:虽然 Brock 模型在 NLST 数据集上验证时获得了较高的 AUC,但模型受益于更新和重新校准。然而,模型中使用的协变量似乎不足以充分区分恶性病例。
J Thorac Oncol. 2018-10-25
N Engl J Med. 2013-9-5
Cancer Commun (Lond). 2020-1
Lung Cancer. 2015-3-28
Radiology. 2019-9-17
BMJ Open Respir Res. 2025-6-27
Br J Radiol. 2023-2
Health Technol Assess. 2022-12
Int J Comput Assist Radiol Surg. 2023-4