文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 NLST 数据对 Brock 模型进行外部验证和重新校准,以预测肺结节中癌症的概率。

External validation and recalibration of the Brock model to predict probability of cancer in pulmonary nodules using NLST data.

机构信息

Department of Radiological Sciences, Medical Imaging Informatics, University of California, Los Angeles, California, USA

Department of Radiological Sciences, Medical Imaging Informatics, University of California, Los Angeles, California, USA.

出版信息

Thorax. 2019 Jun;74(6):551-563. doi: 10.1136/thoraxjnl-2018-212413. Epub 2019 Mar 21.


DOI:10.1136/thoraxjnl-2018-212413
PMID:30898897
Abstract

INTRODUCTION: We performed an external validation of the Brock model using the National Lung Screening Trial (NLST) data set, following strict guidelines set forth by the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis statement. We report how external validation results can be interpreted and highlight the role of recalibration and model updating. MATERIALS AND METHODS: We assessed model discrimination and calibration using the NLST data set. Adhering to the inclusion/exclusion criteria reported by McWilliams , we identified 7879 non-calcified nodules discovered at the baseline low-dose CT screen with 2 years of follow-up. We characterised differences between Pan-Canadian Early Detection of Lung Cancer Study and NLST cohorts. We calculated the slope on the prognostic index and the intercept coefficient by fitting the original Brock model to NLST. We also assessed the impact of model recalibration and the addition of new covariates such as body mass index, smoking status, pack-years and asbestos. RESULTS: While the area under the curve (AUC) of the model was good, 0.905 (95% CI 0.882 to 0.928), a histogram plot showed that the model poorly differentiated between benign and malignant cases. The calibration plot showed that the model overestimated the probability of cancer. In recalibrating the model, the coefficients for emphysema, spiculation and nodule count were updated. The updated model had an improved calibration and achieved an optimism-corrected AUC of 0.912 (95% CI 0.891 to 0.932). Only pack-year history was found to be significant (p<0.01) among the new covariates evaluated. CONCLUSION: While the Brock model achieved a high AUC when validated on the NLST data set, the model benefited from updating and recalibration. Nevertheless, covariates used in the model appear to be insufficient to adequately discriminate malignant cases.

摘要

简介:我们使用国家肺癌筛查试验(NLST)数据集,根据个体预后或诊断的多变量预测模型透明报告的严格准则,对 Brock 模型进行了外部验证。我们报告了如何解释外部验证结果,并强调了重新校准和模型更新的作用。

材料和方法:我们使用 NLST 数据集评估了模型的区分度和校准度。根据 McWilliams 报告的纳入/排除标准,我们确定了 7879 个在基线低剂量 CT 筛查中发现的非钙化结节,这些结节有 2 年的随访。我们描述了 Pan-Canadian Early Detection of Lung Cancer Study 和 NLST 队列之间的差异。我们通过将原始 Brock 模型拟合到 NLST 来计算预后指数的斜率和截距系数。我们还评估了模型重新校准和添加新协变量(如体重指数、吸烟状况、吸烟年数和石棉)的影响。

结果:虽然模型的曲线下面积(AUC)良好,为 0.905(95%CI 0.882 至 0.928),但直方图显示模型在区分良性和恶性病例方面表现不佳。校准图显示模型高估了癌症的概率。在重新校准模型时,更新了肺气肿、毛刺和结节数的系数。更新后的模型校准度得到改善,实现了校正后的 AUC 为 0.912(95%CI 0.891 至 0.932)。在评估的新协变量中,只有吸烟年数被发现具有统计学意义(p<0.01)。

结论:虽然 Brock 模型在 NLST 数据集上验证时获得了较高的 AUC,但模型受益于更新和重新校准。然而,模型中使用的协变量似乎不足以充分区分恶性病例。

相似文献

[1]
External validation and recalibration of the Brock model to predict probability of cancer in pulmonary nodules using NLST data.

Thorax. 2019-3-21

[2]
Predicting Malignancy Risk of Screen-Detected Lung Nodules-Mean Diameter or Volume.

J Thorac Oncol. 2018-10-25

[3]
Probability of cancer in pulmonary nodules detected on first screening CT.

N Engl J Med. 2013-9-5

[4]
Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography.

JAMA Netw Open. 2020-2-5

[5]
Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram.

Cancer Commun (Lond). 2020-1

[6]
Probability of cancer in lung nodules using sequential volumetric screening up to 12 months: the UKLS trial.

Thorax. 2019-4-26

[7]
Validation of a Deep Learning Algorithm for the Detection of Malignant Pulmonary Nodules in Chest Radiographs.

JAMA Netw Open. 2020-9-1

[8]
Risk of malignancy in pulmonary nodules: A validation study of four prediction models.

Lung Cancer. 2015-3-28

[9]
Cancer Risk in Subsolid Nodules in the National Lung Screening Trial.

Radiology. 2019-9-17

[10]
Relationship between nodule count and lung cancer probability in baseline CT lung cancer screening: The NELSON study.

Lung Cancer. 2017-9-1

引用本文的文献

[1]
Collaborative assessment of the risk of postoperative progression in early-stage non-small cell lung cancer: a robust federated learning model.

Cancer Imaging. 2025-7-18

[2]
Radiomic 'Stress Test': exploration of a deep learning radiomic model in a high-risk prospective lung nodule cohort.

BMJ Open Respir Res. 2025-6-27

[3]
Lung Cancer Risk Prediction in Patients with Persistent Pulmonary Nodules Using the Brock Model and Sybil Model.

Cancers (Basel). 2025-4-29

[4]
Construction and analysis of the invasive prediction model for pulmonary nodules: based on clinical, CT image and DNA methylation characteristics.

J Thorac Dis. 2025-3-31

[5]
Enhancing Early Lung Cancer Diagnosis: Predicting Lung Nodule Progression in Follow-Up Low-Dose CT Scan with Deep Generative Model.

Cancers (Basel). 2024-6-15

[6]
Leveraging Serial Low-Dose CT Scans in Radiomics-based Reinforcement Learning to Improve Early Diagnosis of Lung Cancer at Baseline Screening.

Radiol Cardiothorac Imaging. 2024-6

[7]
Impact of localized fine tuning in the performance of segmentation and classification of lung nodules from computed tomography scans using deep learning.

Front Oncol. 2023-3-28

[8]
Lung nodules: sorting the wheat from the chaff.

Br J Radiol. 2023-2

[9]
EarlyCDT Lung blood test for risk classification of solid pulmonary nodules: systematic review and economic evaluation.

Health Technol Assess. 2022-12

[10]
MSTS-Net: malignancy evolution prediction of pulmonary nodules from longitudinal CT images via multi-task spatial-temporal self-attention network.

Int J Comput Assist Radiol Surg. 2023-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索