Suppr超能文献

基于低剂量 CT 检测肺结节的良恶性鉴别预测模型评估。

Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography.

机构信息

Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.

Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany.

出版信息

JAMA Netw Open. 2020 Feb 5;3(2):e1921221. doi: 10.1001/jamanetworkopen.2019.21221.

Abstract

IMPORTANCE

Malignancy prediction models based on participant-related characteristics and imaging parameters from low-dose computed tomography (CT) may improve decision-making regarding nodule management and diagnosis in lung cancer screening.

OBJECTIVE

To externally validate 5 malignancy prediction models that were developed in screening settings, compared with 3 models that were developed in clinical settings, in terms of discrimination and absolute risk calibration among participants in the German Lung Cancer Screening Intervention trial.

DESIGN, SETTING, AND PARTICIPANTS: In this population-based diagnostic study, malignancy probabilities were estimated by applying 8 prediction models to data from 1159 participants in the intervention arm of the Lung Cancer Screening Intervention trial, a randomized clinical trial conducted from October 23, 2007, to April 30, 2016, with ongoing follow-up. This analysis considers end points up to 1 year after individuals' last screening visit. Inclusion criteria for participants were at least 1 noncalcified pulmonary nodule detected on any of 5 annual screening visits, receiving a lung cancer diagnosis within the active screening phase of the Lung Cancer Screening Intervention trial, and an unequivocal identification of the malignant nodules. Data analysis was performed from February 1, 2019, through December 5, 2019.

INTERVENTIONS

Five annual rounds of low-dose multislice CT.

MAIN OUTCOMES AND MEASURES

Discrimination ability and calibration of malignancy probabilities estimated by 5 models developed in data from screening studies (4 Pan-Canadian Early Detection of Lung Cancer Study [PanCan] models using a parsimonious approach including nodule spiculation [PanCan-1b] or a comprehensive approach including nodule spiculation [PanCan-2b], and PanCan-2b replacing the nodule diameter variable with mean diameter [PanCan-MD] or volume [PanCan-VOL], as well as a model developed by the UK Lung Cancer Screening trial) and 3 models developed in clinical settings (US Department of Veterans Affairs, Mayo Clinic, and Peking University People's Hospital).

RESULTS

A total of 1159 participants (median [range] age, 57.63 [50.34-71.89] years; 763 [65.8%] men) with 3903 pulmonary nodules were included in this study. For nodules detected in the prevalence round of CT, the PanCan models showed excellent discrimination (PanCan-1b: area under the curve [AUC], 0.93 [95% CI, 0.87-0.99]; PanCan-2b: AUC, 0.94 [95% CI, 0.89-0.99]; PanCan-MD: AUC, 0.94 [95% CI, 0.91-0.98]; PanCan-VOL: AUC, 0.94 [95% CI, 0.90-0.98]), and all of the screening models except PanCan-MD and PanCan-VOL showed acceptable calibration (PanCan-1b: Spiegelhalter z = -1.081; P = .28; PanCan-2b: Spiegelhalter z = 0.436; P = .67; PanCan-MD: Spiegelhalter z = 3.888; P < .001; PanCan-VOL: Spiegelhalter z = 1.978; P = .05; UK Lung Cancer Screening trial: Spiegelhalter z = -1.076; P = .28), whereas the other models showed worse discrimination and calibration, from an AUC of 0.58 (95% CI, 0.46-0.70) for the UK Lung Cancer Screening trial model to an AUC of 0.89 (95% CI, 0.82-0.97) for the Mayo Clinic model.

CONCLUSIONS AND RELEVANCE

This diagnostic study found that PanCan models showed excellent discrimination and calibration in prevalence screenings, confirming their ability to improve nodule management in screening settings, although calibration to nodules detected in follow-up scans should be improved. The models developed by the Mayo Clinic, Peking University People's Hospital, Department of Veterans Affairs, and UK Lung Cancer Screening Trial did not perform as well.

摘要

重要性

基于参与者相关特征和低剂量计算机断层扫描(CT)成像参数的恶性肿瘤预测模型可能会改善肺癌筛查中关于结节管理和诊断的决策。

目的

在德国肺癌筛查干预试验的参与者中,对 5 个在筛查环境中开发的恶性肿瘤预测模型与 3 个在临床环境中开发的模型进行外部验证,比较它们在区分能力和绝对风险校准方面的表现。

设计、环境和参与者:在这项基于人群的诊断研究中,通过将 8 个预测模型应用于肺癌筛查干预试验干预组 1159 名参与者的数据中,估计恶性肿瘤的概率。肺癌筛查干预试验是一项从 2007 年 10 月 23 日至 2016 年 4 月 30 日进行的随机临床试验,目前正在进行随访。本分析考虑了个体最后一次筛查后 1 年的终点。参与者的纳入标准为:至少有 1 个在 5 次年度筛查中检测到的非钙化性肺结节,在肺癌筛查干预试验的主动筛查阶段内被诊断为肺癌,以及明确识别出恶性结节。数据分析于 2019 年 2 月 1 日至 2019 年 12 月 5 日进行。

干预措施

5 次年度低剂量多层 CT 扫描。

主要观察指标和测量方法

通过在筛查研究中开发的 5 个模型(包括使用节结分叶特征的简洁方法[PanCan-1b]或包括节结分叶特征的综合方法[PanCan-2b]的 4 个泛加拿大早期肺癌检测研究[PanCan]模型,以及用平均直径[PanCan-MD]或体积[PanCan-VOL]代替节结直径变量的 PanCan-2b 模型)和在临床环境中开发的 3 个模型(美国退伍军人事务部、梅奥诊所和北京大学人民医院),评估恶性肿瘤概率的区分能力和校准情况。

结果

本研究共纳入 1159 名参与者(中位[范围]年龄,57.63[50.34-71.89]岁;763[65.8%]为男性),共 3903 个肺结节。对于 CT 检测到的患病率轮次中的结节,PanCan 模型显示出优异的区分能力(PanCan-1b:曲线下面积[AUC],0.93[95%CI,0.87-0.99];PanCan-2b:AUC,0.94[95%CI,0.89-0.99];PanCan-MD:AUC,0.94[95%CI,0.91-0.98];PanCan-VOL:AUC,0.94[95%CI,0.90-0.98]),除了 PanCan-MD 和 PanCan-VOL 之外,所有的筛查模型都显示出可以接受的校准情况(PanCan-1b:Spiegelhalter z=−1.081;P=.28;PanCan-2b:Spiegelhalter z=0.436;P=.67;PanCan-MD:Spiegelhalter z=3.888;P<.001;PanCan-VOL:Spiegelhalter z=1.978;P=.05;UK Lung Cancer Screening trial:Spiegelhalter z=−1.076;P=.28),而其他模型的区分能力和校准情况较差,从 UK Lung Cancer Screening trial 模型的 AUC 为 0.58(95%CI,0.46-0.70)到 Mayo 诊所模型的 AUC 为 0.89(95%CI,0.82-0.97)。

结论和相关性

本诊断研究发现,PanCan 模型在患病率筛查中显示出优异的区分能力和校准情况,证实了它们在筛查环境中改善结节管理的能力,尽管需要改进对随访扫描中检测到的结节的校准情况。Mayo 诊所、北京大学人民医院、美国退伍军人事务部和 UK Lung Cancer Screening trial 开发的模型表现不佳。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验