Suppr超能文献

镍锡纳米颗粒复合碳纳米纤维作为尿素氧化的高效电催化剂及直接尿素燃料电池的工作阳极。

NiSn nanoparticle-incorporated carbon nanofibers as efficient electrocatalysts for urea oxidation and working anodes in direct urea fuel cells.

作者信息

Barakat Nasser A M, Amen Mohamed T, Al-Mubaddel Fahad S, Karim Mohammad Rezual, Alrashed Maher

机构信息

Chemical Engineering Department, Minia University, PO Box 61519, El-Minia, Egypt.

Bionano System Engineering Department, College of Engineering, Chonbuk National University, PO Box 54896, Jeonju, South Korea.

出版信息

J Adv Res. 2018 Dec 16;16:43-53. doi: 10.1016/j.jare.2018.12.003. eCollection 2019 Mar.

Abstract

Synthesis of NiSn alloy nanoparticle-incorporated carbon nanofibers was performed by calcining electrospun mats composed of nickel acetate, tin chloride and poly(vinyl alcohol) under vacuum. The electrochemical measurements indicated that utilization of tin as a co-catalyst could strongly enhance the electrocatalytic activity if its content and calcination temperature were optimized. Typically, the nanofibers prepared from calcination of an electrospun solution containing 15 wt% SnCl at 700 °C have a current density almost 9-fold higher than that of pristine nickel-incorporated carbon nanofibers (77 and 9 mA/cm, respectively) at 30 °C in a 1.0 M urea solution. Furthermore, the current density increases to 175 mA/cm at 55 °C for the urea oxidation reaction. Interestingly, the nanofibers prepared from a solution with 10 wt% of co-catalyst precursor show an onset potential of 175 mV ( Ag/AgCl) at 55 °C, making this proposed composite an adequate anode material for direct urea fuel cells. Optimization of the co-catalyst content to maximize the generated current density resulted in a Gaussian function peak at 15 wt%. However, studying the influence of the calcination temperature indicated that 850 °C was the optimum temperature because synthesizing the proposed nanofibers at 1000 °C led to a decrease in the graphite content, which dramatically decreased the catalyst activity. Overall, the study opens a new venue for the researchers to exploit tin as effective co-catalyst to enhance the electrocatalytic performance of the nickel-based nanostructures. Moreover, the proposed co-catalyst can be utilized with other functional electrocatalysts to improve their activity toward oxidation of different fuels.

摘要

通过在真空条件下煅烧由醋酸镍、氯化锡和聚乙烯醇组成的电纺垫来合成掺有NiSn合金纳米颗粒的碳纳米纤维。电化学测量表明,如果锡作为助催化剂的含量和煅烧温度得到优化,其利用可以强烈提高电催化活性。通常,在700℃煅烧含有15 wt% SnCl的电纺溶液制备的纳米纤维,在1.0 M尿素溶液中于30℃时的电流密度几乎比原始掺镍碳纳米纤维(分别为77和9 mA/cm²)高9倍。此外,对于尿素氧化反应,在55℃时电流密度增加到175 mA/cm²。有趣的是,由含有10 wt%助催化剂前驱体的溶液制备的纳米纤维在55℃时的起始电位为175 mV(Ag/AgCl),这使得这种提议的复合材料成为直接尿素燃料电池的合适阳极材料。将助催化剂含量优化以最大化产生的电流密度,在15 wt%处得到一个高斯函数峰。然而,研究煅烧温度的影响表明850℃是最佳温度,因为在1000℃合成提议的纳米纤维会导致石墨含量降低,这显著降低了催化剂活性。总体而言,该研究为研究人员开辟了一个新途径,以利用锡作为有效的助催化剂来增强镍基纳米结构的电催化性能。此外,提议的助催化剂可与其他功能性电催化剂一起使用,以提高它们对不同燃料氧化的活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b970/6412973/6beb2db36a05/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验