Apter Boris, Lapshina Nadezda, Handelman Amir, Rosenman Gil
Faculty of Engineering, Holon Institute of Technology, Holon, Israel.
School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel.
J Pept Sci. 2019 May;25(5):e3164. doi: 10.1002/psc.3164. Epub 2019 Mar 21.
Basic optical properties of bioinspired peptide nanostructures are deeply modified by thermally mediated refolding of peptide secondary structure from α-helical to β-sheet. This conformational transition is followed by the appearance in the β-sheet structures of a wideband optical absorption and fluorescence in the visible region. We demonstrate that a new biophotonic effect of optical waveguiding recently observed in peptide/protein nanoensembles is a structure-sensitive bimodal phenomenon. In the primary α-helical structure input, light propagates via optical transmission window demonstrating conventional passive waveguiding, based on classical optics. In the β-sheet structure, fluorescent (active) light waveguiding is revealed. The latter can be attributed to completely different physical mechanism of exciton-polariton propagation, characterized by high effective refractive index, and can be observed in nanoscale fibers below diffraction limit. It has been shown that peptide material requirements for passive and active waveguiding are dissimilar. Original biocompatibility and biodegradability indicate high potential future applications of these bioinspired waveguiding materials in precise photobiomedicine towards advanced highly selective bioimaging, photon diagnostics, and optogenetics.
生物启发的肽纳米结构的基本光学性质会因肽二级结构从α-螺旋热介导重折叠为β-折叠而发生深刻改变。这种构象转变之后,β-折叠结构中会出现宽带光学吸收以及可见光区域的荧光。我们证明,最近在肽/蛋白质纳米聚集体中观察到的一种新的光波导生物光子效应是一种结构敏感的双峰现象。在初级α-螺旋结构输入中,光通过光学传输窗口传播,展示出基于经典光学的传统被动波导。在β-折叠结构中,则呈现出荧光(有源)光波导。后者可归因于激子-极化子传播的完全不同的物理机制,其特征是具有高有效折射率,并且可以在低于衍射极限的纳米级纤维中观察到。研究表明,被动和有源波导对肽材料的要求不同。其原始的生物相容性和生物降解性表明,这些受生物启发的波导材料在精确光生物医学中用于先进的高选择性生物成像、光子诊断和光遗传学方面具有很高的潜在未来应用价值。