Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain; Departamento de Química, Universitat Politècnica de Valencia, Valencia, Spain.
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain; Departamento de Química, Universitat Politècnica de Valencia, Valencia, Spain.
Anal Chim Acta. 2019 Jul 4;1060:103-113. doi: 10.1016/j.aca.2019.01.055. Epub 2019 Feb 7.
In the field of biosensing, suitable procedures for efficient probes immobilization are of outmost importance. Here we present different light-based strategies to promote the covalent attachment of thiolated capture probes (oligonucleotides and proteins) on different materials and working formats. One strategy employs epoxylated surfaces and uses the light to accomplish the ring opening by a thiol moiety present in a probe. However, most of this work lies on the use of thiol-ene photocoupling chemistry to covalently attach probes to the supports. And thus, both alkenyl and thiol derivatized surfaces are assayed to immobilize thiol or alkene ended probes, respectively, and their performances are compared. Also, the effect of the number of thiols carried by the probe is analyzed comparing single-point and multi-point attachment. The performance of the analogous tethering, but onto alkynylated surfaces is also carried out, and the sensing response is related to the surfaces hydrophobicity. A newly developed reaction is also discussed where a fluorinated surface undergoes the covalent immobilization of thiolated probes activated by light, creating small hydrophilic areas where the probes are attached, and leaving the rest of the surface highly hydrophobic and repellent against protein unspecific adsorption. These mixed surfaces confine the sample (aqueous) uniquely on the hydrophilic spots lowering the background signal and thus increasing the sensitivity. These probe immobilization approaches are applied to fluorescence microarray and label-free nanophotonic biosensing. All the exposed reactions have in common the photoactivation of the thiol moieties, and give rise to quick, clean, versatile, orthogonal and biocompatible reactions. Water is the only solvent used, and light the only catalyzer applied. Thus, all of them can be considered as having the attributes of click-chemistry reactions. For these reasons we named them as thiol-click photochemistry, being a very interesting pool of possibilities when building a biosensor.
在生物传感领域,高效探针固定的合适程序至关重要。在这里,我们提出了不同的基于光的策略,以促进巯基化捕获探针(寡核苷酸和蛋白质)在不同材料和工作模式上的共价附着。一种策略利用环氧化表面,通过探针中存在的巯基部分用光来完成开环。然而,这项工作主要依赖于使用硫醇-烯光偶联化学将探针共价连接到载体上。因此,分别测试了带有烯基和巯基的衍生表面来固定巯基或烯基末端的探针,并比较了它们的性能。此外,通过比较单点和多点附着,分析了探针所携带的巯基数目的影响。还进行了类似的键合到炔基化表面的实验,并且将传感响应与表面疏水性相关联。还讨论了一种新的反应,其中氟化表面通过光激活的巯基探针的共价固定化,在附着探针的小亲水区创建,而其余表面保持高度疏水性并排斥非特异性蛋白质吸附。这些混合表面将样品(水相)唯一地限制在亲水斑点上,降低背景信号,从而提高灵敏度。这些探针固定方法应用于荧光微阵列和无标记纳米光子生物传感。所有暴露的反应都具有共同的特点,即巯基部分的光激活,从而产生快速、清洁、多功能、正交和生物相容的反应。仅使用水作为溶剂,光作为唯一的催化剂。因此,它们都可以被认为具有点击化学反应的属性。由于这些原因,我们将它们命名为巯基点击光化学,这是构建生物传感器时非常有趣的可能性来源。