Wang Yu, Lu Yi-Chun
Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N. T. 999077, Hong Kong, SAR, China.
Angew Chem Int Ed Engl. 2019 May 20;58(21):6962-6966. doi: 10.1002/anie.201901350. Epub 2019 Apr 11.
The unresolved debate on the active reaction interface of electrochemical oxidation of lithium peroxide (Li O ) prevents rational electrode and catalyst design for lithium-oxygen (Li-O ) batteries. The reaction interface is studied by using isotope-labeling techniques combined with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and on-line electrochemical mass spectroscopy (OEMS) under practical cell operation conditions. Isotopically labelled microsized Li O particles with an Li O /electrode interface and an Li O /electrolyte interface were fabricated. Upon oxidation, O was evolved for the first quarter of the charge capacity followed by O . These observations unambiguously demonstrate that oxygen loss starts from the Li O /electrolyte interface instead of the Li O /electrode interface. The Li O particles are in continuous contact with the catalyst/electrode, explaining why the solid catalyst is effective in oxidizing solid Li O without losing contact.
关于过氧化锂(Li₂O₂)电化学氧化的活性反应界面的争论尚未解决,这阻碍了锂氧(Li-O₂)电池合理的电极和催化剂设计。在实际电池运行条件下,通过结合飞行时间二次离子质谱(ToF-SIMS)和在线电化学质谱(OEMS)的同位素标记技术来研究反应界面。制备了具有Li₂O₂/电极界面和Li₂O₂/电解质界面的同位素标记的微米级Li₂O₂颗粒。氧化时,在充电容量的前四分之一期间释放出¹⁸O,随后是¹⁶O。这些观察结果明确表明,氧的损失始于Li₂O₂/电解质界面而非Li₂O₂/电极界面。Li₂O₂颗粒与催化剂/电极持续接触,这解释了固体催化剂为何能有效氧化固体Li₂O₂而不失去接触。