Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA.
Department of Biostatistics, Brown University, Providence, RI, USA.
Bioinformatics. 2019 Oct 15;35(20):3898-3905. doi: 10.1093/bioinformatics/btz196.
Samples from clinical practices are often mixtures of different cell types. The high-throughput data obtained from these samples are thus mixed signals. The cell mixture brings complications to data analysis, and will lead to biased results if not properly accounted for.
We develop a method to model the high-throughput data from mixed, heterogeneous samples, and to detect differential signals. Our method allows flexible statistical inference for detecting a variety of cell-type specific changes. Extensive simulation studies and analyses of two real datasets demonstrate the favorable performance of our proposed method compared with existing ones serving similar purpose.
The proposed method is implemented as an R package and is freely available on GitHub (https://github.com/ziyili20/TOAST).
Supplementary data are available at Bioinformatics online.
临床实践中的样本通常是不同细胞类型的混合物。因此,从这些样本中获得的高通量数据是混合信号。细胞混合物给数据分析带来了复杂性,如果没有得到妥善处理,将会导致有偏差的结果。
我们开发了一种方法来对混合的、异质的样本的高通量数据进行建模,并检测差异信号。我们的方法允许对各种细胞类型特异性变化进行灵活的统计推断。对两个真实数据集的广泛模拟研究和分析表明,与具有类似功能的现有方法相比,我们提出的方法具有更好的性能。
该方法已实现为 R 包,并可在 GitHub(https://github.com/ziyili20/TOAST)上免费获得。
补充数据可在生物信息学在线获得。