Suppr超能文献

从复杂组织中完全反卷积 DNA 甲基化信号:一种几何方法。

Complete deconvolution of DNA methylation signals from complex tissues: a geometric approach.

机构信息

School of Science, East China University of Technology, Nanchang, Jiangxi 330013, China.

Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA.

出版信息

Bioinformatics. 2021 May 23;37(8):1052-1059. doi: 10.1093/bioinformatics/btaa930.

Abstract

MOTIVATION

It is a common practice in epigenetics research to profile DNA methylation on tissue samples, which is usually a mixture of different cell types. To properly account for the mixture, estimating cell compositions has been recognized as an important first step. Many methods were developed for quantifying cell compositions from DNA methylation data, but they mostly have limited applications due to lack of reference or prior information.

RESULTS

We develop Tsisal, a novel complete deconvolution method which accurately estimate cell compositions from DNA methylation data without any prior knowledge of cell types or their proportions. Tsisal is a full pipeline to estimate number of cell types, cell compositions and identify cell-type-specific CpG sites. It can also assign cell type labels when (full or part of) reference panel is available. Extensive simulation studies and analyses of seven real datasets demonstrate the favorable performance of our proposed method compared with existing deconvolution methods serving similar purpose.

AVAILABILITY AND IMPLEMENTATION

The proposed method Tsisal is implemented as part of the R/Bioconductor package TOAST at https://bioconductor.org/packages/TOAST.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在表观遗传学研究中,对组织样本中的 DNA 甲基化进行分析是一种常见做法,而这些组织样本通常是不同细胞类型的混合物。为了正确解释这种混合物,估计细胞组成被认为是重要的第一步。已经开发出许多从 DNA 甲基化数据中定量细胞组成的方法,但由于缺乏参考或先验信息,它们大多应用有限。

结果

我们开发了 Tsisal,这是一种新颖的完整去卷积方法,它可以在没有任何关于细胞类型或其比例的先验知识的情况下,从 DNA 甲基化数据中准确估计细胞组成。Tsisal 是一个完整的管道,用于估计细胞类型的数量、细胞组成和识别细胞类型特异性 CpG 位点。当有(全部或部分)参考面板时,它还可以分配细胞类型标签。对七个真实数据集的广泛模拟研究和分析表明,与服务于类似目的的现有去卷积方法相比,我们提出的方法具有更好的性能。

可用性和实现

所提出的方法 Tsisal 作为 R/Bioconductor 包 TOAST 的一部分实现,可在 https://bioconductor.org/packages/TOAST 上获取。

补充信息

补充数据可在 Bioinformatics 在线获取。

相似文献

引用本文的文献

本文引用的文献

4
Role of coenzymes in cancer metabolism.辅酶在癌症代谢中的作用。
Semin Cell Dev Biol. 2020 Feb;98:44-53. doi: 10.1016/j.semcdb.2019.05.027. Epub 2019 Jun 19.
6
Immune infiltration in renal cell carcinoma.肾细胞癌中的免疫浸润。
Cancer Sci. 2019 May;110(5):1564-1572. doi: 10.1111/cas.13996. Epub 2019 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验