Suppr超能文献

基于电信号群区分的电描记图定位心房颤动关键部位。

Electroanatomical mapping based on discrimination of electrograms clusters for localization of critical sites in atrial fibrillation.

机构信息

GI(2)B, Instituto Tecnológico Metropolitano, Medellín, Colombia; Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia.

MATBIOM, Universidad de Medellín, Medellín, Colombia.

出版信息

Prog Biophys Mol Biol. 2019 Jan;141:37-46. doi: 10.1016/j.pbiomolbio.2018.07.003. Epub 2018 Jul 6.

Abstract

Locating critical sites on the atrial surface during AF to guide the ablation procedures is an open problem. Electrogram-guided approaches have been proposed. However, electrograms (EGM) are complex and not well-described type of signals and anatomically-based pulmonary vein isolation remains been recommended as the cornerstone procedure. We introduce a method that builds an electroanatomical map to visualize the distribution of different morphological patterns of the EGM signals over the atrial surface. The proposed scheme uses EGM signals recorded with a commercial cardiac mapping. Likewise, two morphological and two non-linear features are computed from each single EGM. Patterns are discriminated using a semi-supervised clustering approach that does not need a priory definition of EGM morphologies or classes. The method was tested under two scenarios: a set of EGM signals recorded in AF patients and a set of signals obtained from 2D simulations of atrial conduction sustained by rotors. Our method was able to locate the clusters in a map of the atrial surface of each patient. These locations allow the specialist to study the distribution of critical AF sites. The method was able to locate the pivot point of the rotors in the 2D models. Our results suggest that the proposed method is a potential assisting tool for guided ablation procedures. Further clinical studies are needed to establish the relationship between clusters and arrhythmogenic substrates in AF, and to validate the usefulness of the method to locate critical conduction sites in patients.

摘要

在房颤期间定位心房表面的关键部位以指导消融程序是一个悬而未决的问题。已经提出了电描记图引导的方法。然而,电描记图(EGM)是复杂的,并且不是很好描述的信号类型,基于解剖学的肺静脉隔离仍然被推荐作为基石程序。我们引入了一种方法,该方法构建电解剖图以可视化 EGM 信号在心房表面上的不同形态模式的分布。所提出的方案使用商业心脏测绘记录的 EGM 信号。同样,从每个单个 EGM 计算出两个形态和两个非线性特征。使用不需要 EGM 形态或类别的先验定义的半监督聚类方法来区分模式。该方法在两种情况下进行了测试:在房颤患者中记录的一组 EGM 信号和一组由转子维持的心房传导的 2D 模拟获得的信号。我们的方法能够在每个患者的心房表面地图上定位聚类。这些位置允许专家研究关键房颤部位的分布。该方法能够在 2D 模型中定位转子的枢轴点。我们的结果表明,所提出的方法是指导消融程序的潜在辅助工具。需要进一步的临床研究来建立聚类与房颤中的致心律失常基质之间的关系,并验证该方法在定位患者关键传导部位方面的有用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验