Suppr超能文献

量化二维域模拟心房颤动时电图中的频率调制。

Quantifying the frequency modulation in electrograms during simulated atrial fibrillation in 2D domains.

机构信息

GIMSC, Universidad de San Buenaventura, Medellin, Colombia.

MATBIOM, Universidad de Medellín, Medellín, Colombia.

出版信息

Comput Biol Med. 2024 Nov;182:109228. doi: 10.1016/j.compbiomed.2024.109228. Epub 2024 Oct 2.

Abstract

Atrial fibrillation (AF) affects millions of people in the world, causing increased morbidity and mortality. Treatment involves antiarrhythmic drugs and catheter ablation, showing high success for paroxysmal AF but challenges for persistent AF. Experimental evidence suggests reentrant waves and rotors contribute to AF substrates. Ablation procedures rely on electroanatomical maps and electrogram (EGM) signals; however, current methods used in clinical practice lack consideration for time-frequency varying EGM components. The fractional Fourier transform (FrFT) can be adopted to capture time-varying frequency components, thereby enhancing the comprehension of arrhythmogenic substrates during AF for improved ablation strategies. To this end, a FrFT-based algorithm is developed to characterize non-stationary components in EGM signals from simulated AF episodes. The proposed algorithm comprises a pre-processing step to enhance the coarser features of the EGM waveform, a windowing process for dynamic assessment of the EGM, and a FrFT order optimization stage that seeks compact signal representations in fractional Fourier domains. The resulting order is related to the rate of frequency change in the signal, making it a useful indicator for frequency-modulated components. The FrFT-based algorithm is implemented on EGM signals from AF simulations in 2D domains representing a region of the atrial tissue. Consequently, the computed optimum FrFT orders are used to build maps that are spatially correlated to the underlying propagation dynamics of the simulated AF episode. The results evince that the extreme values in the optimum orders map pinpoint the localization of fibrillatory mechanisms, generating EGM activation waveforms with varying frequency content over time.

摘要

心房颤动(AF)影响着全球数百万人,导致发病率和死亡率增加。治疗包括抗心律失常药物和导管消融,对阵发性 AF 成功率高,但对持续性 AF 有挑战。实验证据表明,折返波和转子有助于 AF 基质。消融程序依赖于电解剖图和电图(EGM)信号;然而,临床实践中使用的当前方法缺乏对时频变化的 EGM 分量的考虑。分数傅里叶变换(FrFT)可用于捕获时变频率分量,从而增强对 AF 期间致心律失常基质的理解,以制定更好的消融策略。为此,开发了一种基于 FrFT 的算法来描述模拟 AF 发作期间 EGM 信号中的非平稳分量。该算法包括一个预处理步骤,用于增强 EGM 波形的较粗特征,一个用于动态评估 EGM 的窗口过程,以及一个 FrFT 阶优化阶段,该阶段在分数傅里叶域中寻求紧凑的信号表示。所得阶数与信号中的频率变化率有关,因此是频率调制分量的有用指标。基于 FrFT 的算法在代表心房组织区域的 2D 域中的 AF 模拟的 EGM 信号上实现。因此,计算出的最佳 FrFT 阶数用于构建与模拟 AF 发作的潜在传播动力学空间相关的图谱。结果表明,最佳阶数图谱中的极值指出了纤维颤动机制的定位,随着时间的推移产生具有变化频率内容的 EGM 激活波形。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验