Suppr超能文献

对雷特综合征的人类转录组数据进行综合分析,发现了一个涉及的基因网络。

Integrated analysis of human transcriptome data for Rett syndrome finds a network of involved genes.

机构信息

GCK - Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.

Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.

出版信息

World J Biol Psychiatry. 2020 Dec;21(10):712-725. doi: 10.1080/15622975.2019.1593501. Epub 2019 Apr 29.

Abstract

OBJECTIVES

Rett syndrome (RTT) is a rare disorder causing severe intellectual and physical disability. The cause is a mutation in the gene coding for the methyl-CpG binding protein 2 (MECP2), a multifunctional regulator protein. Purpose of the study was integration and investigation of multiple gene expression profiles in human cells with impaired gene to obtain a robust, data-driven insight in molecular disease mechanisms.

METHODS

Information about changed gene expression was extracted from five previously published studies, integrated and the resulting differentially expressed genes were analysed using overrepresentation analysis of biological pathways and gene ontology, and network analysis.

RESULTS

We identified a set of genes, which are significantly changed not in all but several transcriptomics datasets and were not mentioned in the context of RTT before. We found that these genes are involved in several processes and molecular pathways known to be affected in RTT. Integrating transcription factors we identified a possible link how MECP2 regulates cytoskeleton organisation via MEF2C and CAPG.

CONCLUSIONS

Integrative analysis of omics data and prior knowledge databases is a powerful approach to identify links between mutation and phenotype especially in rare disease research where little data is available.

摘要

目的

雷特综合征(RTT)是一种罕见的疾病,导致严重的智力和身体残疾。其病因是编码甲基化-CpG 结合蛋白 2(MECP2)的基因突变,MECP2 是一种多功能调节蛋白。本研究的目的是整合和研究具有受损基因的人类细胞中的多个基因表达谱,以获得对分子疾病机制的稳健、数据驱动的深入了解。

方法

从之前发表的五项研究中提取关于基因表达变化的信息,进行整合,并使用生物途径和基因本体论的过度表达分析以及网络分析来分析由此产生的差异表达基因。

结果

我们确定了一组基因,这些基因在不是所有转录组数据集而是几个转录组数据集中发生显著变化,并且以前在 RTT 背景下没有提到过。我们发现这些基因参与了 RTT 中已知受影响的几个过程和分子途径。整合转录因子,我们确定了 MECP2 通过 MEF2C 和 CAPG 调节细胞骨架组织的可能联系。

结论

整合组学数据和先验知识库的分析是识别突变与表型之间联系的一种有力方法,特别是在数据稀少的罕见疾病研究中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验