Institute of Fine Chemistry and Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.
Nanoscale. 2019 Apr 4;11(14):6737-6746. doi: 10.1039/c8nr09576k.
Hybrid nanostructures comprising conjugated polymers (CPs) and plasmonic metals show excellent performance in light harvesting. However, the energy transfer mechanism of the CP film to nearby metal nanoparticles, especially knowledge of the characteristic distance, is still unclear. Here, quenching of the emission of a CP film in proximity to a monolayer of graphene-nanodot-supported silver nanoparticles (GND-Ag NPs) is investigated. Uniform Ag NPs with D = 3.2 nm were grown on GNDs in situ under mild light irradiation, and a series of bilayer structures of GND-Ag NPs/CPs were constructed by spin-coating blue, green and red light-emitting poly(9,9-dioctylfluorene) (PFO), poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) and poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV),respectively, on top of the GND-Ag NP plane. The spacer distance was controlled by the layers of assembled polyelectrolytes. Both steady and transient photoluminescence (PL) spectra showed emission quenching of the bilayer structures, providing the maximum efficiency of 99% for the F8BT films. The surface density of GND-Ag NPs and the spacer distance-dependent PL quenching data were analyzed within the plasmonic resonant energy transfer model, and the extracted characteristic distances are 6 nm, 3 nm and 10 nm for the PFO, F8BT and MEH-PPV systems, respectively. Current-sensing atomic force microscopy shows that the GND-Ag NPs/F8BT film exhibits enhanced electrical conductivity. These results are believed to be important for the development of plasmonic enhanced polymer photovoltaics and photocatalysis.
包含共轭聚合物 (CPs) 和等离子体金属的杂化纳米结构在光捕获方面表现出优异的性能。然而,CP 薄膜向附近金属纳米粒子的能量转移机制,特别是特征距离的知识,仍然不清楚。在这里,研究了 CP 薄膜在靠近单层石墨烯-纳米点-负载银纳米粒子 (GND-Ag NPs) 附近的发射猝灭。在温和光照下,在 GND 上原位生长了 D = 3.2nm 的均匀 Ag NPs,并通过旋涂蓝色、绿色和红色发光聚(9,9-二辛基芴) (PFO)、聚(9,9-二辛基芴--alt-苯并噻二唑) (F8BT) 和聚[2-甲氧基-5-(2'-乙基己氧基)-对苯乙炔] (MEH-PPV),分别在 GND-Ag NP 平面上构建了一系列 GND-Ag NPs/CPs 的双层结构。通过组装的聚电解质层控制间隔距离。稳态和瞬态光致发光 (PL) 光谱均显示出双层结构的发射猝灭,为 F8BT 薄膜提供了 99%的最大效率。在等离子体共振能量转移模型内分析了 GND-Ag NPs 的表面密度和间隔距离依赖性 PL 猝灭数据,并分别提取了 PFO、F8BT 和 MEH-PPV 体系的特征距离为 6nm、3nm 和 10nm。电流感应原子力显微镜显示,GND-Ag NPs/F8BT 薄膜表现出增强的电导率。这些结果对于开发等离子体增强聚合物光伏和光催化可能是重要的。