Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States.
Acc Chem Res. 2019 Apr 16;52(4):1134-1144. doi: 10.1021/acs.accounts.9b00044. Epub 2019 Mar 25.
The catalytic construction of C-C bonds between organohalide or pseudohalide electrophiles and fundamental building blocks such as alkenes, arenes, or CO are widely utilized metal-catalyzed processes. The use of simple, widely available unactivated alkyl halides in these catalytic transformations has significantly lagged behind the use of aryl or vinyl electrophiles. This difference is primarily due to the relative difficulty of activating alkyl halides with transition metals under mild conditions. This Account details our group's work toward developing a general catalytic manifold for the construction of C-C bonds using unactivated alkyl halides and a range of simple chemical feedstocks. Critical to the strategy was the implementation of new modes of hybrid organometallic-radical reactivity in catalysis. Generation of carbon-centered radicals from alkyl halides using transition metals offers a solution to challenges associated with the application of alkyl electrophiles in classical two-electron reaction modes. A major focus of this work was the development of general palladium-catalyzed carbocyclizations and intermolecular cross-couplings of unactivated alkyl halides (alkyl-Mizoroki-Heck-type reactions). Initial studies centered on the use of alkyl iodides in these processes, but subsequent studies determined that the use of an electron-rich ferrocenyl bisphosphine (dtbpf) enables the palladium-catalyzed carbocyclizations of unactivated alkyl bromides. Mechanistic studies of these reactions revealed interesting details regarding a difference in mechanism between reactions of alkyl iodides and alkyl bromides in carbocyclizations. These studies were consistent with alkyl bromides reacting via an autotandem catalytic process involving atom-transfer radical cyclization (ATRC) followed by catalytic dehydrohalogenation. Reactions of alkyl iodides, on the other hand, involved metal-initiated radical chain pathways. Recent studies have expanded the scope of alkyl-Mizoroki-Heck-type reactions to the use of a first-row transition metal. Inexpensive nickel precatalysts, in combination with the bisphosphine ligand Xantphos, efficiently activate alkyl bromides for both intra- and intermolecular C-C bond-forming reactions. The reaction scope is similar to the palladium-catalyzed system, but in addition, alkene regioisomeric ratios are dramatically improved over those in reactions with palladium, solving one of the drawbacks of our previous work. Initial mechanistic studies were consistent with a hybrid organometallic-radical mechanism for the nickel-catalyzed reactions. The novel reactivity of the palladium catalysts in the alkyl-Mizoroki-Heck-type reactions have also paved the way for the development of other C-C bond-forming processes of unactivated alkyl halides, including aromatic C-H alkylations as well as low-pressure alkoxycarbonylations. Related hybrid organometallic-radical reactivity of manganese has led to an alkene dicarbofunctionalization using alkyl iodides.
有机卤化物或拟卤化物亲电试剂与烯烃、芳烃或 CO 等基本构建块之间 C-C 键的催化构建是广泛应用的金属催化过程。在这些催化转化中,使用简单、广泛可用的未活化的烷基卤化物的情况明显落后于使用芳基或乙烯基亲电试剂的情况。这种差异主要归因于在温和条件下用过渡金属活化烷基卤化物的相对困难。本账户详细介绍了我们小组致力于开发一种通用的催化体系,用于使用未活化的烷基卤化物和一系列简单的化学原料构建 C-C 键。该策略的关键是在催化中实施新的杂金属自由基反应模式。使用过渡金属从烷基卤化物中生成碳中心自由基为经典的两电子反应模式中应用烷基亲电试剂带来的挑战提供了一种解决方案。这项工作的一个主要重点是开发一般的钯催化碳环化和未活化的烷基卤化物的分子间交叉偶联(烷基-Mizoroki-Heck 型反应)。最初的研究集中在这些过程中使用烷基碘化物,但随后的研究确定,使用富电子二茂铁双膦(dtbpf)可使钯催化的未活化烷基溴化物的碳环化反应得以进行。对这些反应的机理研究揭示了碳环化反应中烷基碘化物和烷基溴化物之间在机理上的有趣差异。这些研究与烷基溴化物通过涉及原子转移自由基环化 (ATRC) 随后催化脱卤化氢的自动串联催化过程反应一致。另一方面,烷基碘化物的反应涉及金属引发的自由基链途径。最近的研究将烷基-Mizoroki-Heck 型反应的范围扩展到使用第一行过渡金属。廉价的镍前催化剂与双膦配体 Xantphos 结合,可有效地激活烷基溴化物,用于分子内和分子间的 C-C 键形成反应。反应范围与钯催化体系相似,但此外,与钯相比,烯烃区域异构体比显著提高,解决了我们以前工作的一个缺点。初步的机理研究与镍催化反应的杂金属自由基机理一致。钯催化剂在烷基-Mizoroki-Heck 型反应中的新颖反应性也为开发其他未活化的烷基卤化物的 C-C 键形成过程铺平了道路,包括芳族 C-H 烷基化以及低压烷氧基羰基化。锰的相关杂金属自由基反应性导致使用烷基碘化物进行烯烃双碳官能化。