Wei Hao, Rodriguez Erwin F, Best Adam S, Hollenkamp Anthony F, Chen Dehong, Caruso Rachel A
Particulate Fluids Processing Centre, School of Chemistry , The University of Melbourne , Melbourne , Victoria 3010 , Australia.
CSIRO , Manufacturing, Clayton South, Melbourne , Victoria 3169 , Australia.
ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13194-13204. doi: 10.1021/acsami.8b21627. Epub 2019 Mar 26.
The lithium-sulfur battery (LSB) is a promising candidate for future energy storage but faces technological challenges including the low electronic conductivity of sulfur and the solubility of intermediates during cycling. Additionally, current host materials often lack sufficient conductivity and porosity to raise the sulfur loading to over 80 wt %. Here, ordered mesoporous graphitic carbon/iron carbide nanocomposites were prepared via an evaporation-induced self-assembly process using soluble resol, prehydrolyzed tetraethyl orthosilicate (TEOS), and iron(III) chloride as the carbon, silica (SiO), and iron precursors, respectively. Graphitization and SiO etching were conducted simultaneously via Teflon-assisted, solid-state decomposition at high temperature. A high surface area (∼3100 m g), large pore volume (∼3.3 cm g), and graphitized carbon frame were achieved, giving a high sulfur loading (85 wt %) while tolerating volumetric expansion during discharge. Electrochemical testing of a LSB containing the composite/sulfur cathode exhibited a superior reversible capacity exceeding 1300 mAh g at a moderate current (C/10) and a low decay in capacity of 9% after 500 cycles at C/5. The interaction between mesoporous graphitic carbon and sulfur is proposed.
锂硫电池(LSB)是未来储能领域很有前景的候选者,但面临着包括硫的电子导电性低以及循环过程中中间体的溶解性等技术挑战。此外,目前的主体材料通常缺乏足够的导电性和孔隙率,无法将硫负载量提高到80 wt%以上。在此,通过蒸发诱导自组装过程,分别使用可溶性甲阶酚醛树脂、预水解的正硅酸四乙酯(TEOS)和氯化铁作为碳、二氧化硅(SiO)和铁前驱体,制备了有序介孔石墨碳/碳化铁纳米复合材料。通过聚四氟乙烯辅助的高温固态分解同时进行石墨化和SiO蚀刻。获得了高表面积(约3100 m g)、大孔体积(约3.3 cm g)和石墨化碳框架,在放电过程中容忍体积膨胀的同时实现了高硫负载量(85 wt%)。对含有该复合材料/硫阴极的LSB进行的电化学测试表明,在中等电流(C/10)下具有超过1300 mAh g的优异可逆容量,在C/5下循环500次后容量衰减低至9%。提出了介孔石墨碳与硫之间的相互作用。