Suppr超能文献

针对增强抑制剂设计的人碳酸酐酶相互作用的热力学、动力学和结构参数化。

Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design.

机构信息

Department of Biothermodynamics and Drug Design,Institute of Biotechnology, Life Sciences Center, Vilnius University,Saulėtekio 7, 10257 Vilnius,Lithuania.

Department of Protein-DNA Interactions,Institute of Biotechnology, Life Sciences Center, Vilnius University,Saulėtekio 7, 10257 Vilnius,Lithuania.

出版信息

Q Rev Biophys. 2018 Jan;51:e10. doi: 10.1017/S0033583518000082.

Abstract

The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.

摘要

理性药物设计的目的是使用定量方法开发小分子,以优化亲和力。这应该会促进开发出具有特异性、选择性、可逆性和高亲和力与靶蛋白相互作用的化学化合物。目前还不可能使用计算(即计算机模拟)方法来开发此类化合物,而是通过高通量筛选大量化合物文库来发现先导化合物。计算方法之所以不能成功,主要是因为我们对化合物结构热力学和结构动力学相关性的理解还很有限。需要建立内在结合参数数据库(例如,结合标准吉布斯自由能(ΔGint)、焓(ΔHint)、熵(ΔSint)、体积(ΔVintr)、热容(ΔCp,int)、结合速率(ka,int)和解离速率(kd,int)的变化),这些参数涉及一系列密切相关的蛋白质和一组化学多样但具有药效基团导向的化合物库,以及共晶结构,可以帮助解释结构能量相关性,并合理设计新的化合物。这些数据的组合将有助于尝试提供化合物结合的建模相关和训练数据。在这里,我们报告了包括超过 400 种主要磺胺类化合物与 12 种催化活性人碳酸酐酶(CA)家族结合的内在热力学和动力学的大型数据集。热力学参数通过荧光热移位测定法、等温滴定量热法和抑制酶活性的停流法测定。动力学测量使用表面等离子体共振法进行。通过剖析蛋白质和磺胺的结合相关的质子化反应,确定了结合的内在热力学和动力学参数。报告的化合物结构热力学和动力学相关性有助于发现具有皮摩尔亲和力、长达 1 小时的停留时间和对非靶标 CA 同工型百万倍选择性的化合物。建议将药物先导化合物用于抗癌靶标 CAIX 和 CA XII、抗青光眼 CAIV、抗肥胖 CAVA 和 CA VB 以及其他同工型。与 60 种化合物与 6 种 CA 同工型结合的 85 个 X 射线晶体结构一起,该数据库应该有助于继续开发基于理性靶标的药物设计原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验