Bahaji Abdellatif, Muñoz Francisco José, Seguí-Simarro Jose María, Camacho-Fernández Carolina, Rivas-Sendra Alba, Parra-Vega Verónica, Ovecka Miroslav, Li Jun, Sánchez-López Ángela María, Almagro Goizeder, Baroja-Fernández Edurne, Pozueta-Romero Javier
Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Gobierno de Navarra, Navarra, Spain.
COMAV - Institute for Conservation & Improvement of Valencian Agrodiversity, Universitat Politècnica de València, Valencia, Spain.
Front Plant Sci. 2019 Mar 12;10:242. doi: 10.3389/fpls.2019.00242. eCollection 2019.
Brittle1-1 (ZmBT1-1) is an essential component of the starch biosynthetic machinery in maize endosperms, enabling ADPglucose transport from cytosol to amyloplast in exchange for AMP or ADP. Although ZmBT1-1 has been long considered to be an amyloplast-specific marker, evidence has been provided that ZmBT1-1 is dually localized to plastids and mitochondria (Bahaji et al., 2011b). The mitochondrial localization of ZmBT1-1 suggested that this protein may have as-yet unidentified function(s). To understand the mitochondrial ZmBT1-1 function(s), we produced and characterized transgenic plants expressing ZmBT1-1 delivered specifically to mitochondria. Metabolic and differential proteomic analyses showed down-regulation of sucrose synthase (SuSy)-mediated channeling of sucrose into starch metabolism, and up-regulation of the conversion of sucrose breakdown products generated by cell wall invertase (CWI) into ethanol and alanine, in endosperms compared to wild-type. Electron microscopic analyses of endosperm cells showed gross alterations in the mitochondrial ultrastructure. Notably, the protein expression pattern, metabolic profile, and aberrant mitochondrial ultrastructure of endosperms were rescued by delivering ZmBT1-1 specifically to mitochondria. Results presented here provide evidence that the reduced starch content in endosperms is at least partly due to (i) mitochondrial dysfunction, (ii) enhanced CWI-mediated channeling of sucrose into ethanol and alanine metabolism, and (iii) reduced SuSy-mediated channeling of sucrose into starch metabolism due to the lack of mitochondrial ZmBT1-1. Our results also strongly indicate that (a) mitochondrial ZmBT1-1 is an important determinant of the metabolic fate of sucrose entering the endosperm cells, and (b) plastidic ZmBT1-1 is not the sole ADPglucose transporter in maize endosperm amyloplasts. The possible involvement of mitochondrial ZmBT1-1 in exchange between intramitochondrial AMP and cytosolic ADP is discussed.
脆性1-1(ZmBT1-1)是玉米胚乳中淀粉生物合成机制的重要组成部分,它能使ADP葡萄糖从细胞质转运至造粉体,以交换AMP或ADP。尽管长期以来ZmBT1-1一直被视为造粉体特异性标记物,但已有证据表明ZmBT1-1双定位在质体和线粒体中(Bahaji等人,2011b)。ZmBT1-1在线粒体中的定位表明该蛋白可能具有尚未明确的功能。为了了解线粒体ZmBT1-1的功能,我们构建并鉴定了特异性表达定位于线粒体的ZmBT1-1的转基因植物。代谢和差异蛋白质组学分析表明,与野生型相比,胚乳中蔗糖合酶(SuSy)介导的蔗糖进入淀粉代谢的通道下调,而细胞壁转化酶(CWI)产生的蔗糖分解产物转化为乙醇和丙氨酸的过程上调。胚乳细胞的电子显微镜分析显示线粒体超微结构发生了明显改变。值得注意的是,通过将ZmBT1-1特异性递送至线粒体,胚乳的蛋白质表达模式、代谢谱和异常的线粒体超微结构得到了挽救。此处呈现的结果提供了证据,表明胚乳中淀粉含量降低至少部分归因于:(i)线粒体功能障碍;(ii)CWI介导的蔗糖进入乙醇和丙氨酸代谢的通道增强;(iii)由于缺乏线粒体ZmBT1-1,SuSy介导的蔗糖进入淀粉代谢的通道减少。我们的结果还强烈表明:(a)线粒体ZmBT1-1是进入胚乳细胞的蔗糖代谢命运的重要决定因素;(b)质体ZmBT1-1不是玉米胚乳造粉体中唯一的ADP葡萄糖转运体。本文还讨论了线粒体ZmBT1-1可能参与线粒体内AMP与细胞质ADP交换的情况。