Suppr超能文献

塑料晶体中的巨大压焓效应。

Colossal barocaloric effects in plastic crystals.

机构信息

Shenyang National Laboratory (SYNL) for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.

J-PARC Center, Japan Atomic Energy Agency, Tokai, Japan.

出版信息

Nature. 2019 Mar;567(7749):506-510. doi: 10.1038/s41586-019-1042-5. Epub 2019 Mar 27.

Abstract

Refrigeration is of vital importance for modern society-for example, for food storage and air conditioning-and 25 to 30 per cent of the world's electricity is consumed for refrigeration. Current refrigeration technology mostly involves the conventional vapour compression cycle, but the materials used in this technology are of growing environmental concern because of their large global warming potential. As a promising alternative, refrigeration technologies based on solid-state caloric effects have been attracting attention in recent decades. However, their application is restricted by the limited performance of current caloric materials, owing to small isothermal entropy changes and large driving magnetic fields. Here we report colossal barocaloric effects (CBCEs) (barocaloric effects are cooling effects of pressure-induced phase transitions) in a class of disordered solids called plastic crystals. The obtained entropy changes in a representative plastic crystal, neopentylglycol, are about 389 joules per kilogram per kelvin near room temperature. Pressure-dependent neutron scattering measurements reveal that CBCEs in plastic crystals can be attributed to the combination of extensive molecular orientational disorder, giant compressibility and highly anharmonic lattice dynamics of these materials. Our study establishes the microscopic mechanism of CBCEs in plastic crystals and paves the way to next-generation solid-state refrigeration technologies.

摘要

制冷对于现代社会至关重要,例如用于食品储存和空调,全球 25%至 30%的电力用于制冷。目前的制冷技术主要涉及传统的蒸气压缩循环,但由于其巨大的全球变暖潜能,该技术中使用的材料越来越受到环境关注。作为一种很有前途的替代品,基于固态卡诺效应的制冷技术在最近几十年引起了人们的关注。然而,由于目前的卡诺材料的等温熵变化小和驱动磁场大,其应用受到限制。在这里,我们在一类称为塑料晶体的无序固体中报告了巨大的压热效应(CBCE)(压热效应是压力诱导相变产生的冷却效应)。在代表性的塑料晶体新戊二醇中,在室温附近获得的熵变化约为 389 焦耳/千克/开尔文。压力依赖的中子散射测量表明,塑料晶体中的 CBCE 可以归因于这些材料广泛的分子取向无序、巨大的可压缩性和高度非谐晶格动力学的结合。我们的研究确立了塑料晶体中 CBCE 的微观机制,并为下一代固态制冷技术铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验