Suppr超能文献

通过对 Gene Expression Omnibus (GEO) 中汇集的微阵列基因表达数据集进行生物信息学分析,研究慢性牙周炎诊断和预后的分子生物标志物候选物。

Investigation of molecular biomarker candidates for diagnosis and prognosis of chronic periodontitis by bioinformatics analysis of pooled microarray gene expression datasets in Gene Expression Omnibus (GEO).

机构信息

General Dentistry, The Nippon Dental University Hospital at Tokyo, 2-3-16 Fujimi, Chiyoda-ku, Tokyo, 102-8158, Japan.

Research Center for Odontology, The Nippon Dental University at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-0071, Japan.

出版信息

BMC Oral Health. 2019 Mar 28;19(1):52. doi: 10.1186/s12903-019-0738-0.

Abstract

BACKGROUND

Chronic periodontitis (CP) is a multifactorial inflammatory disease. For the diagnosis of CP, it is necessary to investigate molecular biomarkers and the biological pathway of CP. Although analysis of mRNA expression profiling with microarray is useful to elucidate pathological mechanisms of multifactorial diseases, it is expensive. Therefore, we utilized pooled microarray gene expression data on the basis of data sharing to reduce hybridization costs and compensate for insufficient mRNA sampling. The aim of the present study was to identify molecular biomarker candidates and biological pathways of CP using pooled datasets in the Gene Expression Omnibus (GEO) database.

METHODS

Three pooled transcriptomic datasets (GSE10334, GSE16134, and GSE23586) of gingival tissue with CP in the GEO database were analyzed for differentially expressed genes (DEGs) using GEO2R, functional analysis and biological pathways with the Database of Annotation Visualization and Integrated Discovery database, Protein-Protein Interaction (PPI) network and hub gene with the Search Tool for the Retrieval of Interaction Genes database, and biomarker candidates for diagnosis and prognosis and upstream regulators of dominant biomarker candidates with the Ingenuity Pathway Analysis database.

RESULTS

We shared pooled microarray datasets in the GEO database. One hundred and twenty-three common DEGs were found in gingival tissue with CP, including 81 upregulated genes and 42 downregulated genes. Upregulated genes in Gene Ontology were significantly enriched in immune responses, and those in the Kyoto Encyclopedia of Genes and Genomes pathway were significantly enriched in the cytokine-cytokine receptor interaction pathway, cell adhesion molecules, and hematopoietic cell lineage. From the PPI network, the 12 nodes with the highest degree were screened as hub genes. Additionally, six biomarker candidates for CP diagnosis and prognosis were screened.

CONCLUSIONS

We identified several potential biomarkers for CP diagnosis and prognosis (e.g., CSF3, CXCL12, IL1B, MS4A1, PECAM1, and TAGLN) and upstream regulators of biomarker candidates for CP diagnosis (TNF and TGF2). We also confirmed key genes of CP pathogenesis such as CD19, IL8, CD79A, FCGR3B, SELL, CSF3, IL1B, FCGR2B, CXCL12, C3, CD53, and IL10RA. To our knowledge, this is the first report to reveal associations of CD53, CD79A, MS4A1, PECAM1, and TAGLN with CP.

摘要

背景

慢性牙周炎(CP)是一种多因素炎症性疾病。为了诊断 CP,有必要研究分子生物标志物和 CP 的生物学途径。虽然利用微阵列进行 mRNA 表达谱分析有助于阐明多因素疾病的病理机制,但成本昂贵。因此,我们利用基因表达综合数据库(GEO)数据库中的共享微阵列基因表达数据来降低杂交成本并弥补 mRNA 采样不足。本研究的目的是使用 GEO 数据库中的 pooled 数据集鉴定 CP 的分子生物标志物候选物和生物学途径。

方法

利用 GEO2R 在 GEO 数据库中分析三个 CP 牙龈组织 pooled 转录组数据集(GSE10334、GSE16134 和 GSE23586)中的差异表达基因(DEGs),利用数据库的注释可视化和综合发现数据库进行功能分析和生物途径分析、蛋白-蛋白相互作用(PPI)网络和搜索工具的枢纽基因,用于检索相互作用基因数据库和用于诊断和预后的生物标志物候选物以及优势生物标志物候选物的上游调节剂,利用途径分析数据库进行。

结果

我们共享了 GEO 数据库中的 pooled 微阵列数据集。在 CP 牙龈组织中发现了 123 个共同的 DEGs,包括 81 个上调基因和 42 个下调基因。基因本体论中的上调基因在免疫反应中显著富集,京都基因与基因组百科全书途径中的基因显著富集于细胞因子-细胞因子受体相互作用途径、细胞粘附分子和造血细胞谱系。从 PPI 网络中筛选出 12 个具有最高度数的节点作为枢纽基因。此外,还筛选出 6 个 CP 诊断和预后的生物标志物候选物。

结论

我们鉴定了几个潜在的 CP 诊断和预后的生物标志物候选物(例如 CSF3、CXCL12、IL1B、MS4A1、PECAM1 和 TAGLN)以及 CP 诊断的生物标志物候选物的上游调节剂(TNF 和 TGF2)。我们还证实了 CP 发病机制的关键基因,如 CD19、IL8、CD79A、FCGR3B、SELL、CSF3、IL1B、FCGR2B、CXCL12、C3、CD53 和 IL10RA。据我们所知,这是首次报道 CD53、CD79A、MS4A1、PECAM1 和 TAGLN 与 CP 相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca39/6438035/90a4b32080ee/12903_2019_738_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验