Suppr超能文献

磁铁矿(FeO)纳米颗粒的摄取和转移及其对大麦(Hordeum vulgare L.)光合作用基因的影响。

Uptake and translocation of magnetite (FeO) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.).

机构信息

Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia.

Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia.

出版信息

Chemosphere. 2019 Jul;226:110-122. doi: 10.1016/j.chemosphere.2019.03.075. Epub 2019 Mar 13.

Abstract

This study investigates the fate and impact of iron oxide or magnetite (FeO, ∼13 nm in size) nanoparticles (NPs) in barley (Hordeum vulgare L.), a common crop cultivated around the world. Barley seedlings were grown in hydroponic culture for three weeks to include NPs (125, 250, 500, and 1000 mg/L). Transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) techniques were used to assess their uptake and translocation. Photosynthesis marker genes were quantified by RT-qPCR. Results revealed that increasing doses of FeO NPs were gradually enhanced the plant growth up to 500 mg/L, which promoted the fresh weight (FW) respectively ∼19% and ∼88% for leaf and root tissues than the ones for control. No phytotoxic effect was recorded even at high NPs doses. NPs inclusion increased some phenological parameters such as chlorophyll, total soluble protein, number of chloroplasts, and dry weight. High NPs doses dramatically reduced the catalase activity and hydrogen peroxide content, suggesting a possible function of NPs as nanozyme in vivo. TEM observations showed that FeO NPs penetrated and internalized in the root cells. In leaves, they were mostly existed at the surrounding cell wall, suggesting their translocation from root to shoot without cellular penetration. Further analysis by using VSM confirmed the existence of FeO NPs in leaves which result in dramatic alterations of the photosystem genes (PetA, psaA, BCA and psbA). In conclusion, barley plants uptake and translocate FeO NPs, which promoted the plant growth probably due to the promoted gene expression and efficient photosynthetic activity.

摘要

本研究调查了氧化铁或磁铁矿(FeO,尺寸约为 13nm)纳米颗粒(NPs)在大麦(Hordeum vulgare L.)中的命运和影响,大麦是一种在世界各地广泛种植的常见作物。大麦幼苗在水培中生长了三周,包括 NPs(125、250、500 和 1000mg/L)。使用透射电子显微镜(TEM)和振动样品磁强计(VSM)技术来评估它们的摄取和转运。通过 RT-qPCR 定量测定光合作用标记基因。结果表明,随着 FeO NPs 剂量的增加,植物生长逐渐增强,在 500mg/L 时,叶片和根组织的鲜重(FW)分别比对照增加了约 19%和 88%。即使在高 NPs 剂量下,也没有记录到植物毒性效应。NPs 的包含增加了一些物候参数,如叶绿素、总可溶性蛋白、叶绿体数量和干重。高 NPs 剂量显著降低了过氧化氢酶活性和过氧化氢含量,这表明 NPs 在体内可能具有纳米酶的功能。TEM 观察表明,FeO NPs 穿透并内化到根细胞中。在叶片中,它们主要存在于细胞壁周围,表明它们从根部转移到茎部而没有细胞穿透。使用 VSM 进行的进一步分析证实了叶片中存在 FeO NPs,这导致了光合作用基因(PetA、psaA、BCA 和 psbA)的显著改变。总之,大麦植物吸收和转运 FeO NPs,这可能促进了植物的生长,原因可能是基因表达的促进和有效的光合作用活性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验