Faculty of Physics, Department of Medical Physics, Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
Faculty of Physics, Department of Medical Physics, Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
Phys Med. 2019 Mar;59:92-99. doi: 10.1016/j.ejmp.2019.03.002. Epub 2019 Mar 8.
An analytical simulator of ion Radiography (iRad) and Computed Tomography (iCT) for protons is proposed to serve as imaging benchmark for different detector configurations.
The analytical simulator is applied to an anthropomorphic phantom and provides iRad and iCT benchmarks. Proton trajectories are traced relying on the Most Likely Path (MLP) algorithm. To simulate the proton trajectories the Multiple Coulomb Scattering (MCS) model embedded in the MLP algorithm is extended to non-uniform water equivalent materials according to variable substitution in the well-known statistical description in uniform water. The proton trajectories are instead estimated relying on the typical assumption of uniform water, thus causing intrinsic inaccuracies of the MLP algorithm. In this work the analytical simulator is used to explore and firstly compare the imaging performances of list-mode and integration-mode detector configurations with proton pencil beam scanning.
The intrinsic inaccuracies of the MLP algorithm affect the imaging performances of list-mode detector configuration, which nevertheless remains superior to integration-mode detector configuration for iCTs. For relatively higher proton statistics, comparable or better imaging performances are offered by integration-mode detector configuration for iRads (upto 29.2% of WET difference). Uncertainties of proton trajectories due to beam spot size are shown to compromise the imaging performances of integration-mode detector configuration, but also to affect the accuracy of the MLP algorithm for list-mode detector configuration.
Based on MCS model in non-uniform water equivalent materials, the proposed simulation environment can serve for development and testing of dedicated imaging methodologies prior to and in combination with realistic Monte Carlo simulations.
提出了一种用于质子离子射线照相(iRad)和计算机断层扫描(iCT)的分析模拟器,作为不同探测器配置的成像基准。
该分析模拟器应用于人体模型,并提供 iRad 和 iCT 基准。质子轨迹依赖于最可能路径(MLP)算法进行追踪。为了模拟质子轨迹,嵌入 MLP 算法中的多次库仑散射(MCS)模型根据均匀水中著名的统计描述中的变量替换扩展到非均匀水等效材料。质子轨迹是根据均匀水的典型假设来估计的,因此导致 MLP 算法的固有不准确性。在这项工作中,分析模拟器用于探索和首次比较具有质子铅笔束扫描的列表模式和积分模式探测器配置的成像性能。
MLP 算法的固有不准确性会影响列表模式探测器配置的成像性能,但对于 iCT,它仍然优于积分模式探测器配置。对于相对较高的质子统计数据,积分模式探测器配置对于 iRads(高达 29.2%的 WET 差异)提供了可比或更好的成像性能。由于束斑大小引起的质子轨迹不确定性会影响积分模式探测器配置的成像性能,但也会影响列表模式探测器配置的 MLP 算法的准确性。
基于非均匀水等效材料中的 MCS 模型,所提出的模拟环境可用于在现实蒙特卡罗模拟之前和与之结合开发和测试专用成像方法。