Yang Chao, Li Qingquan, Hu Zhongwen, Chen Junyi, Shi Tiezhu, Ding Kai, Wu Guofeng
Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the Ministry of Natural Resources & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China; College of Information Engineering, Shenzhen University, Shenzhen 518060, China.
Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the Ministry of Natural Resources & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China.
Sci Total Environ. 2019 Jun 25;671:232-247. doi: 10.1016/j.scitotenv.2019.03.154. Epub 2019 Mar 12.
As major urban agglomerations with strong urbanization, global bay areas are seldom detected and compared in detail regarding the spatiotemporal evolution of their urban expansion. In this work, a framework was applied for detecting and comparing the spatiotemporal evolution of urban agglomerations in four major bay areas: the San Francisco Bay Area and the New York Bay Area in the US, the Tokyo Bay Area in Japan, and the Guangdong-Hong Kong-Macau (GHM) Bay Area in China. Landsat images from 1987, 1997, 2007 and 2017 were employed to derive the four urban bay areas using the object-oriented support vector machine (O-SVM) classification method, and a multi-scale spatial analysis method was applied to detect the landscape characteristics and types of growth in the urban expansions. The results showed that: (1) the O-SVM classification method exhibited a high accuracy in urban area extraction, especially for classifying large-scale images; (2) the urban areas of the San Francisco Bay Area, the New York Bay Area, the Tokyo Bay Area and the GHM Bay Area from 1987 to 2017 expanded from 1686.82, 5315.93, 3765.09 and 605.71 km to 2714.7, 8359.18, 5351.06 and 7568.19 km, respectively, with a corresponding annual average increase of 1.60%, 1.52%, 1.18% and 8.82%; (3) the GHM Bay Area had the largest expansion area and rate among the four bay areas; (4) both the San Francisco Bay Area and the New York Bay Area successively formed a multi-nuclei ribbon model, and the Tokyo Bay Area and the GHM Bay Area formed a multinuclear fan-shaped model and a triangle zonal expansion pattern, respectively; and (5) the spatial patterns of urban expansions in these bay areas shifted from outlying to edge-expansion and infilling, in which the Tokyo Bay Area and the New York Bay Area experienced the largest infilling growth, and the San Francisco Bay Area followed closely thereafter; all were ahead of the GHM Bay Area. These results will be helpful for the understanding and sustainable development of these bay areas.
作为城市化进程强劲的主要城市群,全球湾区在城市扩张的时空演变方面很少得到详细的检测和比较。在这项研究中,我们应用了一个框架来检测和比较四个主要湾区城市群的时空演变:美国的旧金山湾区和纽约湾区、日本的东京湾区以及中国的粤港澳大湾区。利用1987年、1997年、2007年和2017年的陆地卫星图像,采用面向对象支持向量机(O-SVM)分类方法提取了这四个城市湾区,并应用多尺度空间分析方法来检测城市扩张中的景观特征和增长类型。结果表明:(1)O-SVM分类方法在城市区域提取方面具有较高的准确性,尤其是在对大规模图像进行分类时;(2)1987年至2017年,旧金山湾区、纽约湾区、东京湾区和粤港澳大湾区的城市面积分别从1686.82平方千米、5315.93平方千米、3765.09平方千米和605.71平方千米扩展到2714.7平方千米、8359.18平方千米、5351.06平方千米和7568.19平方千米,相应的年平均增长率分别为1.60%、1.52%、1.18%和8.82%;(3)粤港澳大湾区在四个湾区中扩张面积和扩张速度最大;(4)旧金山湾区和纽约湾区先后形成了多核带状模式,东京湾区和粤港澳大湾区分别形成了多核扇形模式和三角形带状扩张模式;(5)这些湾区城市扩张的空间模式从外围向边缘扩张和填充转变,其中东京湾区和纽约湾区的填充增长最大,旧金山湾区紧随其后;均领先于粤港澳大湾区。这些结果将有助于对这些湾区的理解和可持续发展。