Lechel Tilman, Kumar Roopender, Bera Mrinal K, Zimmer Reinhold, Reissig Hans-Ulrich
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany.
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
Beilstein J Org Chem. 2019 Mar 13;15:655-678. doi: 10.3762/bjoc.15.61. eCollection 2019.
The LANCA three-component reaction of lithiated alkoxyallenes , nitriles and carboxylic acids leads to β-ketoenamides in good to excellent yields. The scope of this reaction is very broad and almost all types of nitriles and carboxylic acids have successfully been used. The alkoxy group introduced via the allene component is also variable and hence the subsequent transformation of this substituent into a hydroxy group can be performed under different conditions. Enantiopure nitriles or carboxylic acids can also be employed leading to chiral with high enantiopurity and dinitriles or dicarboxylic acids also lead to the expected bis-β-ketoenamides. β-Ketoenamides incorporate a unique combination of functional groups and hence a manifold of subsequent reactions to highly substituted heterocyclic compounds is possible. An intramolecular aldol-type condensation reaction efficiently furnishes pyridin-4-ols that can be further modified by palladium-catalyzed reactions, e.g., to specifically substituted furopyridine derivatives. Condensations of β-ketoenamides with ammonium salts or with hydroxylamine hydrochloride afford pyrimidines or pyrimidine -oxides with a highly flexible substitution pattern in good yields. The functional groups of these heterocycles also allow a variety of subsequent reactions to various pyrimidine derivatives. On the other hand, acid-labile alkoxy substituents such as a 2-(trimethylsilyl)ethoxy group are required for the conversion of β-ketoenamides into 5-acetyl-substituted oxazoles , again compounds with high potential for subsequent functional group transformations. For acid labile β-ketoenamides bearing bulky substituents the acid treatment leads to acylamido-substituted 1,2-diketones that could be converted into quinoxalines . All classes of heterocycles accessed through the key β-ketoenamides show a unique substitution pattern - not easily accomplishable by alternative methods - and therefore many subsequent reactions are possible.
锂化的烯丙基醚、腈和羧酸的LANCA三组分反应能以良好至优异的产率生成β-酮烯酰胺。该反应的适用范围非常广泛,几乎所有类型的腈和羧酸都已成功应用。通过烯丙基组分引入的烷氧基也是可变的,因此可以在不同条件下将该取代基转化为羟基。也可以使用对映体纯的腈或羧酸,从而得到高对映纯度的手性产物,而二腈或二羧酸也能生成预期的双β-酮烯酰胺。β-酮烯酰胺包含独特的官能团组合,因此可以进行多种后续反应生成高度取代的杂环化合物。分子内的羟醛型缩合反应能高效地生成吡啶-4-醇,其可以通过钯催化的反应进一步修饰,例如生成特定取代的呋喃并吡啶衍生物。β-酮烯酰胺与铵盐或盐酸羟胺缩合可高产率地得到具有高度灵活取代模式的嘧啶或嘧啶氧化物。这些杂环的官能团也允许进行各种后续反应生成各种嘧啶衍生物。另一方面,将β-酮烯酰胺转化为5-乙酰基取代的恶唑需要酸不稳定的烷氧基取代基,如2-(三甲基硅基)乙氧基,同样这些化合物具有后续官能团转化的高潜力。对于带有庞大取代基的酸不稳定的β-酮烯酰胺,酸处理会导致生成酰氨基取代的1,2-二酮,其可以转化为喹喔啉。通过关键中间体β-酮烯酰胺得到的所有类型的杂环都显示出独特的取代模式——这是通过其他方法不容易实现的——因此可以进行许多后续反应。