Suppr超能文献

简单使用 BIC 评估模型选择不确定性:使用中介和调节模型进行说明。

Simple use of BIC to Assess Model Selection Uncertainty: An Illustration using Mediation and Moderation Models.

机构信息

College of Mathematics and Informatics, Fujian Normal University, Fujian, China.

Department of Psychology, University of Macau, Macau, China.

出版信息

Multivariate Behav Res. 2020 Jan-Feb;55(1):1-16. doi: 10.1080/00273171.2019.1574546. Epub 2019 Apr 1.

Abstract

The Bayesian information criterion (BIC) has been used sometimes in SEM, even adopting a frequentist approach. Using simple mediation and moderation models as examples, we form posterior probability distribution via using BIC, which we call the BIC posterior, to assess model selection uncertainty of a finite number of models. This is simple but rarely used. The posterior probability distribution can be used to form a credibility set of models and to incorporate prior probabilities for model comparisons and selections. This was validated by a large scale simulation and results showed that the approximation via the BIC posterior is very good except when both the sample sizes and magnitude of parameters are small. We applied the BIC posterior to a real data set, and it has the advantages of flexibility in incorporating prior, addressing overfitting problems, and giving a full picture of posterior distribution to assess model selection uncertainty.

摘要

贝叶斯信息准则(BIC)有时也被用于 SEM 中,即使采用的是频率论方法。我们以简单的中介和调节模型为例,通过使用 BIC 构建后验概率分布,我们称之为 BIC 后验,以评估有限数量模型的模型选择不确定性。这种方法简单但很少使用。后验概率分布可用于形成模型的置信集,并结合先验概率进行模型比较和选择。这通过大规模模拟得到了验证,结果表明,除了样本量和参数幅度都较小时,通过 BIC 后验进行近似的效果非常好。我们将 BIC 后验应用于真实数据集,它具有灵活性,可结合先验信息,解决过度拟合问题,并提供后验分布的全貌,以评估模型选择的不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验