Doi Masaaki, Takahashi Fumihiro, Kawasaki Yohei
Clinical Data Science and Quality Management Department, Toray Industries, Inc., Tokyo, Japan.
Graduate School of Science and Engineering, Chuo University, Tokyo, Japan.
Stat Med. 2017 Dec 30;36(30):4789-4803. doi: 10.1002/sim.7495. Epub 2017 Sep 27.
Noninferiority trials have recently gained importance for the clinical trials of drugs and medical devices. In these trials, most statistical methods have been used from a frequentist perspective, and historical data have been used only for the specification of the noninferiority margin Δ>0. In contrast, Bayesian methods, which have been studied recently are advantageous in that they can use historical data to specify prior distributions and are expected to enable more efficient decision making than frequentist methods by borrowing information from historical trials. In the case of noninferiority trials for response probabilities π ,π , Bayesian methods evaluate the posterior probability of H :π >π -Δ being true. To numerically calculate such posterior probability, complicated Appell hypergeometric function or approximation methods are used. Further, the theoretical relationship between Bayesian and frequentist methods is unclear. In this work, we give the exact expression of the posterior probability of the noninferiority under some mild conditions and propose the Bayesian noninferiority test framework which can flexibly incorporate historical data by using the conditional power prior. Further, we show the relationship between Bayesian posterior probability and the P value of the Fisher exact test. From this relationship, our method can be interpreted as the Bayesian noninferior extension of the Fisher exact test, and we can treat superiority and noninferiority in the same framework. Our method is illustrated through Monte Carlo simulations to evaluate the operating characteristics, the application to the real HIV clinical trial data, and the sample size calculation using historical data.
非劣效性试验最近在药物和医疗器械的临床试验中变得愈发重要。在这些试验中,大多数统计方法都是从频率主义的角度使用的,历史数据仅用于确定非劣效性界值Δ>0。相比之下,最近研究的贝叶斯方法具有优势,因为它们可以利用历史数据来指定先验分布,并且有望通过借鉴历史试验的信息,比频率主义方法做出更有效的决策。在针对反应概率π1、π2的非劣效性试验中,贝叶斯方法评估原假设H0:π1>π2 - Δ为真的后验概率。为了数值计算这种后验概率,会使用复杂的Appell超几何函数或近似方法。此外,贝叶斯方法与频率主义方法之间的理论关系尚不清楚。在这项工作中,我们给出了在一些温和条件下非劣效性后验概率的精确表达式,并提出了贝叶斯非劣效性检验框架,该框架可以通过使用条件功效先验灵活地纳入历史数据。此外,我们展示了贝叶斯后验概率与Fisher精确检验的P值之间的关系。基于这种关系,我们的方法可以被解释为Fisher精确检验的贝叶斯非劣效性扩展,并且我们可以在同一框架中处理优效性和非劣效性。通过蒙特卡罗模拟对我们的方法进行了说明,以评估其操作特性、应用于实际的HIV临床试验数据以及使用历史数据进行样本量计算。