Department of Chemistry , Nuclear Research Center-Negev , Beer-Sheva 84190 , Israel.
NanoEngineering Group, Faculty of Mechanical Engineering , Technion-Israel Institute of Technology , 32000 Haifa , Israel.
J Phys Chem B. 2019 Apr 25;123(16):3535-3542. doi: 10.1021/acs.jpcb.9b02227. Epub 2019 Apr 15.
Incorporation of carbon nanotubes (CNTs) into liquid crystalline phases of cellulose nanocrystals (CNCs) may be used for preparation of hybrids with novel optical, electrical, and mechanical properties. Here, we investigated the effect of nanoparticle diameter, geometry, aspect ratio, and flexibility on the exclusion of dispersed carbon nanostructures (CNs) from the chiral nematic phase (N*) of the CNCs. Although the CNs are nicely dispersed in isotropic suspensions of CNCs, we observe that fullerenes, carbon black, and CNTs are depleted from the N* phase. This observation is surprising as theoretical predictions and previous observations of nanoparticles indicate that nanometric inclusions would be incorporated within the N* phase. Cryogenic transmission electron microscopy imaging reveals that the dispersed CNs induce misorientation of the CNCs, irrespective of their geometry and size. Rheological measurements suggest that about 10% of the CNCs are affected by the CNs. The multiparticle nature of the interaction may be the origin of the nonsize selective exclusion of the CNs. Re-entrant behavior is observed at high CNC concentrations (about 13 wt %), where a (nematic) gel-like phase kinetically traps the CNs. These phases exhibit non-Newtonian flow behavior and birefringence, offering a pathway for preparation of nonisotropic CNCs-CNT composites and thin films via liquid processing.
将碳纳米管(CNTs)纳入纤维素纳米晶体(CNCs)的液晶相,可能用于制备具有新颖光学、电学和机械性能的杂化材料。在此,我们研究了纳米颗粒直径、几何形状、纵横比和柔韧性对分散碳纳米结构(CNs)从 CNCs 的手性向列相(N*)中排除的影响。尽管 CNs 在 CNCs 的各向同性悬浮液中得到了很好的分散,但我们观察到富勒烯、炭黑和 CNT 从 N相耗尽。这一观察结果令人惊讶,因为理论预测和以前对纳米颗粒的观察表明,纳米级的夹杂物将被纳入 N相。低温透射电子显微镜成像显示,分散的 CNs 会导致 CNCs 的取向失配,而与它们的几何形状和尺寸无关。流变学测量表明,约 10%的 CNCs 受到 CNs 的影响。相互作用的多粒子性质可能是 CNs 非尺寸选择性排除的原因。在高 CNC 浓度(约 13wt%)下观察到再进入行为,其中(向列)凝胶状相动力学地捕获 CNs。这些相表现出非牛顿流动行为和双折射,为通过液态处理制备各向异性 CNCs-CNT 复合材料和薄膜提供了途径。