Suppr超能文献

将芯片接口与数字微流控技术集成,用于细菌转化和酶分析。

Integration of World-to-Chip Interfaces with Digital Microfluidics for Bacterial Transformation and Enzymatic Assays.

机构信息

Department of Electrical and Computer Engineering , Concordia University , Montréal , Québec H3G1M8 , Canada.

Centre for Applied Synthetic Biology , Concordia University , Montréal , Québec H4B1R6 , Canada.

出版信息

Anal Chem. 2019 Apr 16;91(8):5159-5168. doi: 10.1021/acs.analchem.8b05754. Epub 2019 Apr 4.

Abstract

Digital microfluidics (DMF) represents an alternative to the conventional microfluidic paradigm of transporting fluids in enclosed channels. One of the major benefits of DMF is that fluid motion and control is achieved without external pumps. The automation component of DMF have pushed the barriers of this "lab-on-chip" technology. However, integration with external components (i.e., "world-to-chip") interfaces have been a challenge. Two common "world-to-chip" challenges are (1) delivering biological samples to DMF devices and (2) accurately controlling temperatures on device. To address these challenges, this work describes two "world-to-chip" interface features that have been integrated on a DMF platform: a reagent delivery system and a thermal control apparatus. This platform enables a variety of biological or chemical experiments to be conducted on-chip while reducing manual intervention. Specifically, our platform increases reagent volumes available to device reservoirs volume by at least 50-fold eliminating the need to manually refill reservoirs while improving droplet dispensing reproducibility. In addition, we have integrated a closed-loop temperature control system that offers precise temperature control on-chip. To validate our "world-to-chip" interface, we have automated bacterial transformation and enzymatic assay protocols, showing that such a system enhances DMF performance. Overall, we propose that this system will improve biological experimentation which requires fluidic and temperature control integrated on DMF platforms.

摘要

数字微流控(DMF)代表了一种替代传统微流控在封闭通道中输送流体的范例。DMF 的主要优势之一是无需外部泵即可实现流体运动和控制。DMF 的自动化组件推动了这项“芯片实验室”技术的发展。然而,与外部组件(即“世界到芯片”)的集成一直是一个挑战。两个常见的“世界到芯片”挑战是(1)将生物样本输送到 DMF 设备,以及(2)准确控制设备上的温度。为了解决这些挑战,这项工作描述了两个已集成到 DMF 平台上的“世界到芯片”接口特征:试剂输送系统和热控制装置。该平台可在减少人工干预的情况下,在芯片上进行各种生物或化学实验。具体来说,我们的平台将设备储液器的可用试剂体积增加了至少 50 倍,消除了手动重新填充储液器的需要,同时提高了液滴分配的重现性。此外,我们还集成了一个闭环温度控制系统,可在芯片上实现精确的温度控制。为了验证我们的“世界到芯片”接口,我们已经自动化了细菌转化和酶分析协议,表明这样的系统增强了 DMF 的性能。总的来说,我们提出该系统将改善需要在 DMF 平台上集成流体和温度控制的生物实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验