Suppr超能文献

纤维上的肽纳米结构用于周围神经再生。

Peptide nanostructures on nanofibers for peripheral nerve regeneration.

机构信息

Centre of Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India.

出版信息

J Tissue Eng Regen Med. 2019 Jun;13(6):1059-1070. doi: 10.1002/term.2860. Epub 2019 May 14.

Abstract

Self-assembled peptide nanofibrous scaffolds with designer sequences, similar to neurite growth promoting molecules enhance the differentiation of neural stem cells. However, self-assembled peptide nanofibrous scaffolds lack the required mechanical strength to suffice to bridge long critical-sized peripheral nerve defects. Hence, there is a demand for a potential neural substrate, which could be biomimetic coupled with bioactive nanostructures to regrow the denuded axons towards the distal end. In the present study, we developed designer self-assembling peptide-based aligned poly(lactic-co-glycolic acid) (PLGA) nanofibrous scaffolds by simple surface coating of peptides or coelectrospinning. Retention of secondary structures of peptides in peptide-coated and cospun fibers was confirmed by circular dichroism spectroscopy. The rod-like peptide nanostructures enhance the typical bipolar morphology of Schwann cells. Although the peptide-coated PLGA scaffolds exhibited significant increase in Schwann cell proliferation than pristine PLGA and PLGA-peptide cospun scaffolds (p < .05), peptide cospun scaffolds demonstrated better cellular infiltration and significantly higher gene expression of neural cell adhesion molecule, glial fibrillary acidic protein, and peripheral myelin protein22 compared to the pristine PLGA and PLGA-peptide-coated scaffolds. Our results demonstrate the positive effects of aligned peptide coelectrospun scaffolds with biomimetic cell recognition motifs towards functional proliferation of Schwann cells. These scaffolds could subsequently repair peripheral nerve defects by augmenting axonal regeneration and functional nerve recovery.

摘要

具有设计序列的自组装肽纳米纤维支架类似于促进神经突生长的分子,可增强神经干细胞的分化。然而,自组装肽纳米纤维支架缺乏所需的机械强度,无法充分桥接长的临界尺寸周围神经缺损。因此,需要一种潜在的神经基质,它可以与仿生和生物活性纳米结构相结合,使裸露的轴突向远端再生。在本研究中,我们通过简单的肽表面涂层或共电纺开发了基于设计自组装肽的定向聚(乳酸-共-乙醇酸)(PLGA)纳米纤维支架。圆二色光谱证实了肽涂层和共纺纤维中肽二级结构的保留。棒状肽纳米结构增强了施万细胞的典型双极形态。尽管肽涂层 PLGA 支架显示出比原始 PLGA 和 PLGA-肽共纺支架更高的施万细胞增殖率(p <.05),但与原始 PLGA 和 PLGA-肽涂层支架相比,肽共纺支架表现出更好的细胞渗透和更高的神经细胞粘附分子、神经胶质纤维酸性蛋白和周围髓鞘蛋白 22 的基因表达。我们的结果表明,具有仿生细胞识别基序的定向肽共电纺支架对施万细胞的功能增殖具有积极影响。这些支架可以通过增强轴突再生和功能神经恢复来修复周围神经缺损。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验