Suppr超能文献

一氧化氮与表面粗糙度对不同细菌菌株生物膜减少的联合影响。

Combined influence of nitric oxide and surface roughness in biofilm reduction across bacteria strains.

作者信息

Paricio Lindsey, Neufeld Bella, Reynolds Melissa

机构信息

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872.

出版信息

Biointerphases. 2019 Apr 4;14(2):021004. doi: 10.1116/1.5089246.

Abstract

Effective use of medical device implants is often hindered by infection, which may cause the device to be rejected from the body and seriously endanger health. Such infections are often a result of biofilm formation or microbial colonies collecting on a surface. Therefore, a challenge in the medical field is to mitigate the impact of biofilm formation in order to save thousands of lives and millions of healthcare dollars annually. The proposed strategy is to target the attachment phase of the biofilm lifecycle to try to prevent the formation of antimicrobial resistant biofilms. Prevention of bacterial attachment may be induced through the introduction of nitric oxide (NO), a small biological signaling molecule known for its antibacterial properties. NO may be delivered via release from a donating molecule incorporated in the polymer composing the medical device. The NO donor S-nitrosoglutathione (GSNO) was utilized in this study because it is a relatively stable small molecule that naturally exists in the body, therefore negating possible adverse reactions when it is introduced to the body. Tygon, a polymer commonly found in Food and Drug Administration approved medical devices such as catheters, was utilized as a platform for the inhibition of biofilms. To study the necessary amount of released NO needed to cause a reduction in attachment across varying strains, different concentrations of GSNO were applied. Two Gram-negative (Pseudomonas aeruginosa and Acinetobacter baumannii) and two Gram-positive species (Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus), all strong biofilm formers listed as urgent threats by the Center for Disease Control, illustrated different responses to NO. Gram-positive species showed a decrease in viability over 80% with an average total NO release of 2.01 ± 2.11 × 10   μmols, while Gram-negative response was less, with viability decreasing to 38% (P. aeruginosa) and 71% (A. baumannii) with 1.25 ± 1.63 × 10μmols NO. Further studies utilizing glutathione surface roughness controls highlight that increasing the surface roughness of the polymer platform produces no statistically significant difference in viability compared to the Tygon-only negative control in all strains except P. aeruginosa. Developing a quantitative understanding of how NO release and platform surface roughness impact biofilm attachment across Gram strains is key to reducing the incidence and impact of medical device associated infections.

摘要

医疗器械植入物的有效使用常常受到感染的阻碍,感染可能导致器械被身体排斥,并严重危及健康。此类感染通常是生物膜形成或微生物菌落聚集在表面所致。因此,医学领域面临的一项挑战是减轻生物膜形成的影响,以便每年挽救数千人的生命并节省数百万美元的医疗费用。拟议的策略是针对生物膜生命周期的附着阶段,试图防止形成具有抗微生物抗性的生物膜。可通过引入一氧化氮(NO)来诱导防止细菌附着,NO是一种具有抗菌特性的小型生物信号分子。NO可通过掺入构成医疗器械的聚合物中的供体分子释放来递送。本研究使用了NO供体S-亚硝基谷胱甘肽(GSNO),因为它是一种相对稳定的小分子,天然存在于体内,因此引入体内时不会产生可能的不良反应。泰贡(Tygon)是一种常用于食品药品监督管理局批准的医疗器械(如导管)中的聚合物,被用作抑制生物膜的平台。为了研究不同菌株减少附着所需的NO释放量,应用了不同浓度的GSNO。两种革兰氏阴性菌(铜绿假单胞菌和鲍曼不动杆菌)和两种革兰氏阳性菌(金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌),均被疾病控制中心列为紧急威胁的强生物膜形成菌,对NO表现出不同的反应。革兰氏阳性菌在平均总NO释放量为2.01±2.11×10μmols时,存活率下降超过80%,而革兰氏阴性菌的反应较小,在释放1.25±1.63×10μmols NO时,存活率分别降至38%(铜绿假单胞菌)和71%(鲍曼不动杆菌)。利用谷胱甘肽表面粗糙度对照的进一步研究表明,与仅使用泰贡的阴性对照相比,除铜绿假单胞菌外,在所有菌株中增加聚合物平台的表面粗糙度在存活率方面没有统计学上的显著差异。对NO释放和平台表面粗糙度如何影响革兰氏菌株的生物膜附着形成定量理解是降低医疗器械相关感染的发生率和影响的关键。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验