Suppr超能文献

比较激光诱导击穿光谱、近红外光谱及其集成在蔬菜样品中同时测定微量和常量营养素的多元素分析。

Comparing laser induced breakdown spectroscopy, near infrared spectroscopy, and their integration for simultaneous multi-elemental determination of micro- and macronutrients in vegetable samples.

机构信息

Institute of Chemistry, State University of Campinas, P.O. Box 6154, CEP 13084-970, Campinas, SP, Brazil.

Institute of Chemistry, State University of Campinas, P.O. Box 6154, CEP 13084-970, Campinas, SP, Brazil.

出版信息

Anal Chim Acta. 2019 Jul 25;1062:28-36. doi: 10.1016/j.aca.2019.02.043. Epub 2019 Mar 3.

Abstract

Laser-induced breakdown spectroscopy (LIBS) is an appealing analytical technique for simultaneous multi-elemental analysis. Near-infrared spectroscopy (NIRS) has also been suggested for the same purpose, mainly for vegetable samples. However, LIBS has failed to provide adequate results in many cases due to sample matrix complexity, and NIRS performance is harmed because of its lack of sensitivity and indirect correlation with inorganic elemental species. In this work, the performance of these two techniques are compared for the determination of micro- and macroelements in vegetable samples (Brachiaria forages) using multivariate regression. In addition, a data fusion scheme, in which spectral data sourced by NIRS is integrated with LIBS, is proposed to improve elemental content determination in those samples. The information of the molecular composition detected by NIR vibrational spectroscopy was consistently selected by recursive partial least squares to yield quantitative multivariate models for K, Ca, Mg, Mn and Fe in forage plants that are superior to models based on the use of individual NIRS and LIBS spectral information. While all data fusion models showed better predictive accuracy than any of the two individual techniques, best results were observed for Ca. This suggests that matrix composition affects each element determination by LIBS distinctively and supports the idea that a successful quantitative data fusion strategy for LIBS requires a technique such as NIRS which is sensitive to this variability.

摘要

激光诱导击穿光谱(LIBS)是一种有吸引力的分析技术,可用于同时进行多元素分析。近红外光谱(NIRS)也被提议用于相同的目的,主要用于蔬菜样品。然而,由于样品基质的复杂性,LIBS 在许多情况下未能提供足够的结果,而 NIRS 的性能则受到其灵敏度不足和与无机元素种类的间接相关性的影响。在这项工作中,使用多元回归比较了这两种技术在蔬菜样品(Brachiaria 饲料)中测定微量和常量元素的性能。此外,还提出了一种数据融合方案,其中将 NIRS 获得的光谱数据与 LIBS 集成,以改善这些样品中元素含量的测定。通过递归偏最小二乘法选择由近红外振动光谱检测到的分子组成信息,为饲料植物中的 K、Ca、Mg、Mn 和 Fe 生成优于基于单个 NIRS 和 LIBS 光谱信息使用的定量多元模型。虽然所有数据融合模型的预测精度都优于任何两种单独技术,但 Ca 的结果最佳。这表明基质组成对 LIBS 对每个元素的测定有明显的影响,并支持这样一种观点,即成功的 LIBS 定量数据融合策略需要一种对这种可变性敏感的技术,如 NIRS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验