Suppr超能文献

在中等高温等离子体中,由动力学阿尔芬波湍流引起的随机质子加热。

Stochastic proton heating by kinetic-Alfvén-wave turbulence in moderately high- plasmas.

作者信息

Hoppock Ian W, Chandran Benjamin D G, Klein Kristopher G, Mallet Alfred, Verscharen Daniel

机构信息

Space Science Center, University of New Hampshire, Durham, NH, 03824, USA.

Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, 85719, USA.

出版信息

J Plasma Phys. 2018 Dec;84(6). doi: 10.1017/S0022377818001277. Epub 2018 Dec 19.

Abstract

Stochastic heating refers to an increase in the average magnetic moment of charged particles interacting with electromagnetic fluctuations whose frequencies are much smaller than the particles' cyclotron frequencies. This type of heating arises when the amplitude of the gyroscale fluctuations exceeds a certain threshold, causing particle orbits in the plane perpendicular to the magnetic field to become stochastic rather than nearly periodic. We consider the stochastic heating of protons by Alfvén-wave (AW) and kinetic-Alfvén-wave (KAW) turbulence, which may make an important contribution to the heating of the solar wind. Using phenomenological arguments, we derive the stochastic-proton-heating rate in plasmas in which ∼ 1 - 30, where is the ratio of the proton pressure to the magnetic pressure. (We do not consider the ≳ 30 regime, in which KAWs at the proton gyroscale become non-propagating.) We test our formula for the stochastic-heating rate by numerically tracking test-particle protons interacting with a spectrum of randomly phased AWs and KAWs. Previous studies have demonstrated that at ≲1, particles are energized primarily by time variations in the electrostatic potential and thermal-proton gyro-orbits are stochasticized primarily by gyroscale fluctuations in the electrostatic potential. In contrast, at ≳ 1, particles are energized primarily by the solenoidal component of the electric field and thermal-proton gyro-orbits are stochasticized primarily by gyroscale fluctuations in the magnetic field.

摘要

随机加热是指与频率远低于粒子回旋频率的电磁涨落相互作用的带电粒子平均磁矩增加。当回旋尺度涨落的幅度超过某个阈值时,就会出现这种加热类型,导致垂直于磁场平面内的粒子轨道变得随机而非近似周期性。我们考虑了阿尔文波(AW)和动理学阿尔文波(KAW)湍流对质子的随机加热,这可能对太阳风的加热有重要贡献。利用唯象论证,我们推导出了质子压力与磁压力之比(\beta\sim1 - 30)的等离子体中的随机质子加热率。(我们不考虑(\beta\gtrsim30)的情况,在这种情况下,质子回旋尺度的KAWs变得非传播。)我们通过数值跟踪与一系列随机相位的AWs和KAWs相互作用的测试粒子质子,来检验我们的随机加热率公式。先前的研究表明,在(\beta\lesssim1)时,粒子主要通过静电势的时间变化获得能量,热质子的回旋轨道主要通过静电势的回旋尺度涨落而随机化。相比之下,在(\beta\gtrsim1)时,粒子主要通过电场的螺线管分量获得能量,热质子的回旋轨道主要通过磁场的回旋尺度涨落而随机化。

相似文献

2
Kinetic simulations of magnetized turbulence in astrophysical plasmas.天体物理等离子体中磁化湍流的动力学模拟。
Phys Rev Lett. 2008 Feb 15;100(6):065004. doi: 10.1103/PhysRevLett.100.065004. Epub 2008 Feb 14.
3
How Alfvén waves energize the solar wind: heat vs work.阿尔文波如何为太阳风提供能量:热与功。
J Plasma Phys. 2021 Apr;87(2). doi: 10.1017/s0022377821000167. Epub 2021 Apr 14.
5
Kinetic Heating by Alfvén Waves in Magnetic Shears.磁切变中阿尔文波引起的动力学加热
Phys Rev Lett. 2022 Jan 14;128(2):025101. doi: 10.1103/PhysRevLett.128.025101.
7
Electron heating in kinetic-Alfvén-wave turbulence.动力学阿尔芬波湍流中的电子加热。
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2220927120. doi: 10.1073/pnas.2220927120. Epub 2023 May 30.
9
Preferential heating and acceleration of alpha particles by Alfvén-cyclotron waves.阿尔文回旋波对α粒子的优先加热与加速
Phys Rev Lett. 2009 May 1;102(17):175001. doi: 10.1103/PhysRevLett.102.175001. Epub 2009 Apr 27.

引用本文的文献

1
The multi-scale nature of the solar wind.太阳风的多尺度特性。
Living Rev Sol Phys. 2019;16(1):5. doi: 10.1007/s41116-019-0021-0. Epub 2019 Dec 9.

本文引用的文献

1
Thermal disequilibration of ions and electrons by collisionless plasma turbulence.离子与电子的非碰撞等离子体湍流热失配。
Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):771-776. doi: 10.1073/pnas.1812491116. Epub 2018 Dec 31.
4
Anisotropic scaling of magnetohydrodynamic turbulence.磁流体动力学湍流的各向异性标度
Phys Rev Lett. 2008 Oct 24;101(17):175005. doi: 10.1103/PhysRevLett.101.175005.
6
Alfven waves in the solar corona.日冕中的阿尔文波。
Science. 2007 Aug 31;317(5842):1192-6. doi: 10.1126/science.1143304.
7
Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence.磁流体动力学湍流的电涨落谱测量
Phys Rev Lett. 2005 Jun 3;94(21):215002. doi: 10.1103/PhysRevLett.94.215002. Epub 2005 Jun 2.
8
Observation of fast stochastic ion heating by drift waves.
Phys Rev Lett. 1987 Sep 28;59(13):1436-1439. doi: 10.1103/PhysRevLett.59.1436.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验