Noccaro A, Raiano L, Di Pino G, Formica D
Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Universitá Campus Bio-Medico di Roma, Rome, Italy.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2018 Aug 1;2018:1115-1119. doi: 10.1109/BIOROB.2018.8487930. Epub 2018 Oct 11.
In this paper we compare three approaches to solve the hand-eye and robot-world calibration problem, for their application to a Transcranial Magnetic Stimulation (TMS) system. The selected approaches are: i) non-orthogonal approach (QR24); ii) stochastic global optimization (SGO); iii) quaternion-based (QUAT) method. Performance were evaluated in term of translation and rotation errors, and computational time. The experimental setup is composed of a 7 dof Panda robot (by Franka Emika GmbH) and a Polaris Vicra camera (by Northern Digital Inc) combined with the SofTaxic Optic software (by E.M.S. srl). The method resulted to have the best performance, since it provides lowest errors and high stability over different datasets and number of calibration points. The only drawback is its computational time, which is higher than the other two, but this parameter is not relevant for TMS application. Over the different dataset used in our tests, the small workspace (sphere with radius of 0.05) and a number of calibration points around 150 allow to achieve the best performance with the method, with an average error of 0.83 ± 0.35 for position and 0.22 ± 0.12 for orientation.
在本文中,我们比较了三种用于解决手眼和机器人-世界校准问题的方法,以便将其应用于经颅磁刺激(TMS)系统。所选方法为:i)非正交方法(QR24);ii)随机全局优化(SGO);iii)基于四元数的(QUAT)方法。从平移和旋转误差以及计算时间方面对性能进行了评估。实验装置由一台7自由度熊猫机器人(由Franka Emika GmbH公司生产)、一台北极星Vicra相机(由北方数字公司生产)以及SofTaxic Optic软件(由E.M.S. srl公司提供)组成。该方法表现出最佳性能,因为它在不同数据集和校准点数下提供了最低的误差和高稳定性。唯一的缺点是其计算时间比其他两种方法长,但该参数对于TMS应用并不重要。在我们测试中使用的不同数据集上,小工作空间(半径为0.05的球体)以及约150个校准点的情况下,该方法能实现最佳性能,位置平均误差为±0.35,方向平均误差为±0.12。 0.83 0.22