Suppr超能文献

手眼校准技术在视觉引导机器人中的精度评估。

Accuracy evaluation of hand-eye calibration techniques for vision-guided robots.

机构信息

Centre for Future Transport and Cities, Coventry University, Coventry, United Kingdom.

School of Mechanical, Aerospace and Automotive Engineering, Coventry University, Coventry, United Kingdom.

出版信息

PLoS One. 2022 Oct 19;17(10):e0273261. doi: 10.1371/journal.pone.0273261. eCollection 2022.

Abstract

Hand-eye calibration is an important step in controlling a vision-guided robot in applications like part assembly, bin picking and inspection operations etc. Many methods for estimating hand-eye transformations have been proposed in literature with varying degrees of complexity and accuracy. However, the success of a vision-guided application is highly impacted by the accuracy the hand-eye calibration of the vision system with the robot. The level of this accuracy depends on several factors such as rotation and translation noise, rotation and translation motion range that must be considered during calibration. Previous studies and benchmarking of the proposed algorithms have largely been focused on the combined effect of rotation and translation noise. This study provides insight on the impact of rotation and translation noise acting in isolation on the hand-eye calibration accuracy. This deviates from the most common method of assessing hand-eye calibration accuracy based on pose noise (combined rotation and translation noise). We also evaluated the impact of the robot motion range used during the hand-eye calibration operation which is rarely considered. We provide quantitative evaluation of our study using six commonly used algorithms from an implementation perspective. We comparatively analyse the performance of these algorithms through simulation case studies and experimental validation using the Universal Robot's UR5e physical robots. Our results show that these different algorithms perform differently when the noise conditions vary rather than following a general trend. For example, the simultaneous methods are more resistant to rotation noise, whereas the separate methods are better at dealing with translation noise. Additionally, while increasing the robot rotation motion span during calibration enhances the accuracy of the separate methods, it has a negative effect on the simultaneous methods. Conversely, increasing the translation motion range improves the accuracy of simultaneous methods but degrades the accuracy of the separate methods. These findings suggest that those conditions should be considered when benchmarking algorithms or performing a calibration process for enhanced accuracy.

摘要

手眼校准是控制视觉引导机器人在零件装配、分拣和检查等应用中的重要步骤。文献中提出了许多用于估计手眼变换的方法,其复杂程度和精度各不相同。然而,视觉引导应用的成功高度依赖于视觉系统与机器人之间手眼校准的精度。这种精度水平取决于几个因素,例如旋转和平移噪声、在校准过程中必须考虑的旋转和平移运动范围。以前的研究和对所提出算法的基准测试主要集中在旋转和平移噪声的综合影响上。本研究深入了解了单独作用的旋转和平移噪声对手眼校准精度的影响。这与基于姿态噪声(旋转和平移噪声的组合)评估手眼校准精度的最常见方法不同。我们还评估了在很少考虑的手眼校准操作期间使用的机器人运动范围的影响。我们从实现的角度使用来自六个常用算法对我们的研究进行了定量评估。我们通过使用 Universal Robot 的 UR5e 物理机器人进行模拟案例研究和实验验证,比较分析了这些算法的性能。我们的结果表明,当噪声条件发生变化时,这些不同的算法的性能表现不同,而不是遵循一般趋势。例如,同时方法对旋转噪声更具抵抗力,而单独方法更适合处理平移噪声。此外,在校准过程中增加机器人旋转运动范围可以提高单独方法的精度,但对同时方法有负面影响。相反,增加平移运动范围可以提高同时方法的精度,但会降低单独方法的精度。这些发现表明,在基准测试算法或执行校准过程以提高精度时,应考虑这些条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff5/9581431/0a6d088e7962/pone.0273261.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验