Synchrotron Catalysis Consortium and Columbia University, New York, NY, USA.
Brookhaven National Laboratory, Upton, NY, USA.
Top Curr Chem (Cham). 2019 Apr 4;377(3):11. doi: 10.1007/s41061-019-0236-5.
Despite its attractive features as a power source for direct alcohol fuel cells, utilization of ethanol is still hampered by both fundamental and technical challenges. The rationale behind the slow and incomplete ethanol oxidation reaction (EOR) with low selectivity towards CO on most Pt-based catalysts is still far from being understood, and a number of practical problems need to be addressed before an efficient and low-cost catalyst is designed. Some recent achievements towards solving these problems are presented. Pt film electrodes and Pt monolayer (Pt) electrodes on various single crystal substrates showed that EOR follows the partial oxidation pathway without C-C bond cleavage, with acetic acid and acetaldehyde as the final products. The role of the substrate lattice on the catalytic properties of Pt was proven by the choice of appropriate M(111) structure (M = Pd, Ir, Rh, Ru and Au) showing enhanced kinetics when Pt is under tensile strain on Au(111) electrode. Nanostructured electrocatalysts containing Pt-Rh solid solution on SnO and Pt monolayer on non-noble metals are shown, optimized, and characterized by in situ methods. Electrochemical, in situ Fourier transform infrared (FTIR) and X-ray absorption spectroscopy (XAS) techniques highlighted the effect of Rh in facilitating C-C bond splitting in the ternary PtRh/SnO catalyst. In situ FTIR proved quantitatively the enhancement in the total oxidation pathway to CO, and in situ XAS confirmed that Pt and Rh form a solid solution that remains in metallic form through a wide range of potentials due to the presence of SnO. Combination of these findings with density functional theory calculations revealed the EOR reaction pathway and the role of each constituent of the ternary PtRh/SnO catalyst. The optimal Pt:Rh:Sn atomic ratio was found by the two in situ techniques. Attempts to replace Rh with cost-effective alternatives for commercially viable catalysts has shown that Ir can also split the C-C bond in ethanol, but the performance of optimized Pt-Rh-SnO is still higher than that of the Pt-Ir-SnO catalyst.
尽管乙醇作为直接醇燃料电池的电源具有吸引力,但由于基础和技术挑战,其利用仍受到阻碍。大多数基于 Pt 的催化剂对 CO 的选择性低且乙醇氧化反应 (EOR) 缓慢且不完全的原因仍远未被理解,在设计高效且低成本的催化剂之前,还需要解决许多实际问题。本文介绍了一些解决这些问题的最新进展。在各种单晶基底上的 Pt 薄膜电极和 Pt 单层 (Pt) 电极表明,EOR 遵循部分氧化途径,没有 C-C 键的断裂,最终产物为乙酸和乙醛。通过选择合适的 M(111)结构 (M = Pd、Ir、Rh、Ru 和 Au),证明了基底晶格对 Pt 催化性能的作用,当 Pt 在 Au(111)电极上受到拉伸应变时,显示出增强的动力学。展示了含有 Pt-Rh 固溶体的 SnO 和非贵金属上的 Pt 单层的纳米结构电催化剂,并通过原位方法进行了优化和表征。电化学、原位傅里叶变换红外 (FTIR) 和 X 射线吸收光谱 (XAS) 技术强调了 Rh 在促进三元 PtRh/SnO 催化剂中 C-C 键断裂方面的作用。原位 FTIR 定量证明了总氧化途径对 CO 的增强,原位 XAS 证实 Pt 和 Rh 形成了固溶体,由于 SnO 的存在,固溶体在很宽的电位范围内保持金属形式。将这些发现与密度泛函理论计算相结合,揭示了 EOR 反应途径和三元 PtRh/SnO 催化剂中每个组分的作用。通过两种原位技术找到了最佳的 Pt:Rh:Sn 原子比。用成本效益更高的替代物 Rh 代替商用催化剂的尝试表明,Ir 也可以在乙醇中分裂 C-C 键,但优化后的 Pt-Rh-SnO 的性能仍然高于 Pt-Ir-SnO 催化剂。